Derivation of general polarization propagator methods
Most higher-order response methods use some form of the polarization propagator, which is what I intend to derive here. It can then be used to derive other methods, such as TDHF/RPA and SOPPA.
We have derived earlier a response function, or frequency dependent polarizability,
\[\Pi(BA\vert \omega) = \lim_{\eta \rightarrow 0} \left(\frac{1}{\hbar}\right) \sum\limits_{n\neq0} \left\{ \frac{\langle 0 \vert B \vert n\rangle\langle n \vert A \vert 0\rangle}{\omega + i\eta - \omega_{0n}} - \frac{\langle 0 \vert A \vert n\rangle \langle n \vert B \vert 0 \rangle}{\omega + i\eta + \omega_{0n}} \right\} \ \ \ \ \ (1)\]where \({A}\) is the applied perturbation, and \({B}\) is the observable, and both are assumed to be Hermitian. \({\omega_{0n}}\) is the excitation energy for the change between states \({0}\) and \({n}\). It should be clear that the response function has poles when \({\omega}\) — the applied field frequency – equals to the excitation energy \({\omega_{0n}}\). Finding these poles is precisely the goal of polarization propagator methods. In the polarization propagator approach, the above equation has \({\eta}\) set to 0, and the response function (the `propagator’), defined as:
\(\langle \langle B;A \rangle \rangle_{\omega} \equiv \sum\limits_{n\neq0} \left\{ \frac{\langle 0 \vert B \vert n\rangle\langle n \vert A \vert 0\rangle}{\hbar\omega - \hbar\omega_{0n}} + \frac{\langle 0 \vert A \vert n\rangle \langle n \vert B \vert 0 \rangle}{-\hbar\omega - \hbar\omega_{0n}} \right\} \ \ \ \ \ (2)\)
Now we want to describe the propagator in terms of commutators between \({A}\) and \({B}\). Make the observation that \({\frac{ab}{c+d} = \frac{ab}{c} - \frac{d}{c}\left(\frac{ab}{c+d}\right)}\), and applying to the first term of the above yields:
\(\sum\limits_{n\neq0} \frac{\langle 0 \vert B \vert n\rangle\langle n \vert A \vert 0\rangle}{\hbar\omega - \hbar\omega_{0n}} = \sum\limits_{n\neq0} \frac{\langle 0 \vert B \vert n\rangle\langle n \vert A \vert 0\rangle}{\hbar\omega} -\sum\limits_{n\neq0} \frac{-\hbar\omega_{0n}\langle 0 \vert B \vert n\rangle\langle n \vert A \vert 0\rangle}{\hbar\omega\left(\hbar\omega - \hbar\omega_{0n}\right)} \ \ \ \ \ (3)\)
Do the same for the second term and combine, recognizing that the \({n=0}\) term vanishes in the first part (thus we get a sum over all \({n}\)), and making use of the fact that \({1 = \sum\limits_{n}\vert n\rangle\langle n\vert }\) and \({H\vert n \rangle = E_n\vert n\rangle}\) and \({\hbar\omega_{0n} = E_n - E_0}\):
\(\langle \langle B;A \rangle \rangle_{\omega} = \frac{1}{\hbar\omega} \langle 0 \vert \left[B,A\right] \vert 0 \rangle + \frac{1}{\hbar\omega} \sum\limits_{n\neq0} \left\{\frac{\langle 0 \vert B \vert n\rangle\langle n \vert \left[H,A\right] \vert 0\rangle}{\hbar\omega - \hbar\omega_{0n}} + \frac{\langle 0 \vert \left[H,A\right] \vert n\rangle\langle n \vert B \vert 0\rangle}{-\hbar\omega - \hbar\omega_{0n}}\right\} \ \ \ \ \ (4)\)
Which is to say that
\(\langle \langle B;A \rangle \rangle_{\omega} = \frac{1}{\hbar\omega} \langle 0 \vert \left[B,A\right] \vert 0 \rangle + \frac{1}{\hbar\omega}\langle \langle B;\left[H,A\right] \rangle \rangle_{\omega} \ \ \ \ \ (5)\)
Or, as we will use it:
\(\hbar\omega\langle \langle B;A \rangle \rangle_{\omega} = \langle 0 \vert \left[B,A\right] \vert 0 \rangle - \langle \langle \left[H,B\right] A \rangle \rangle_{\omega} \ \ \ \ \ (6)\)
As you may have started to see, we can define the propagator iteratively in terms of commutator expectation values of ever-increasing complexity. This is what is known as the so-called ‘‘moment expansion’’ of the propagator. Thus by iteration:
\(\langle \langle B;A \rangle \rangle_{\omega} = \frac{1}{\hbar\omega} \left\{ \langle 0 \vert \left[B,A\right] \vert 0 \rangle + \left(\frac{-1}{\hbar\omega}\right)\langle 0 \vert \left[\left[H,B\right],A\right] \vert 0 \rangle + \left(\frac{-1}{\hbar\omega}\right)^2\langle 0 \vert \left[\left[H,\left[H,B\right]\right],A\right] \vert 0 \rangle + \cdots \right\} \ \ \ \ \ (7)\)
We introduce the ‘‘superoperator’’ (analogous to the Liouville operator in Statistical Mechanics), which acts on operators to give their commutator:
\[\hat{H}B = \left[H,B\right], \qquad \hat{H}^2B = \left[H,\left[H,B\right]\right], \qquad \hat{H}^3B = \left[H,\left[H,\left[H,B\right]\right]\right], \qquad \cdots \ \ \ \ \ (8)\]With this definition, we have the power series
\(\langle \langle B;A \rangle \rangle_{\omega} = \frac{1}{\hbar\omega} \sum\limits_{n=0}^{\infty} \left(\frac{-1}{\hbar\omega}\right)^n \langle 0 \vert \left[\hat{H}^nB,A\right]\vert 0\rangle \ \ \ \ \ (9)\)
At this point we make two useful observations. First, recognize that
\(\langle 0 \vert \left[\hat{H}B,A\right]\vert 0\rangle = -\langle0\vert \left[B,\hat{H}A\right]\vert 0\rangle \ \ \ \ \ (10)\)
and so \({\hat{H}}\) can be applied to \({A}\) instead of \({B}\) insofar as we introduce a factor of \({(-1)^n}\). Furthermore, note that the power series is equivalent to
\(\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots \ \ \ \ \ (11)\)
Making use of these two observations (and using \({\hat{1}X = X}\) and \({\hat{H}^0 = \hat{1}}\), where \({\hat{1}}\) is the unit superoperator), we have
\(\langle \langle B;A \rangle \rangle_{\omega} = \langle 0 \vert \left[B,\left(\hbar\omega\hat{1} - \hat{H}\right)^{-1}A\right]\vert 0\rangle \ \ \ \ \ (12)\)
Which is merely a cosmetic change at this point, as the superoperator resolvent is defined by the series expansion. We need to find a matrix representation of the resolvent, which implies that we find a complete basis set of operators. To do this, we are going to develop an operator space, where \({\hat{H}}\) is defined by its effect on operators instead of vectors. Introducing the notation
\(\left(X\vert Y\right) = \langle 0 \vert \left[X^{\dagger},Y\right] \vert 0 \rangle \ \ \ \ \ (13)\)
and it follows that \({\left(Y\vert X\right) = \left(X\vert Y\right)^*}\). As defined, we now have
\(\langle \langle B;A \rangle \rangle_{\omega} = \left(B^{\dagger}\vert \left(\hbar\omega\hat{1} - \hat{H}\right)^{-1}\vert A \right) \ \ \ \ \ (14)\)
Which is formally exact, albeit useless until we develop approximations. However, the form of the above equation does look similar to ordinary vector spaces in Hartree-Fock, etc. methods. Truncation of a basis in linear vector space \({V}\) to \({n}\) elements produces a subspace \({V_n}\), and truncation of a general vector corresponds to finding its projection onto the subspace. It follows, then, that we need to find a projection operator \({\rho}\), associated with the truncated basis. If the basis (\({\mathbf{e}}\), say) is orthonormal we write
\(\rho = \sum\limits_i e_ie_i^* = \mathbf{ee}^{\dagger} \ \ \ \ \ (15)\)
which in a complete basis gives:
\(\rho = \sum\limits_i \vert e_i\rangle \langle e_i\vert = \mathbf{1} \ \ \ \ \ (16)\)
If it is not an orthonormal basis, we must include the metric matrix \({\mathbf{S} = \mathbf{e}^{\dagger}\mathbf{e}}\) (or L"{o}wdin basis \({\mathbf{\overline{e}}\mathbf{S}^{-1/2}}\)):
\(\rho = \mathbf{eS}^{-1}\mathbf{e}^{\dagger} = \sum\limits_{ij} e_i (S^{-1})_{ij}e_j^* \ \ \ \ \ (17)\)
When using a truncated basis in operator space, two kinds of projections are useful (Löwdin, 1977, 1982),
\(A' = \rho A \rho, \qquad A'' = A^{1/2} \rho A^{1/2} \ \ \ \ \ (18)\)
which are the outer projection and inner projection, respectively, onto space \({V_n}\) defined by \({\rho}\). Note that \(AB = C\) does not imply \(A'B' = C'\) does not imply \(A''B'' = C''\). Plugging the metric into \({A''}\):
\(A'' = A^{1/2}\mathbf{eS}^{-1}\mathbf{e}^{\dagger}A^{1/2} \ \ \ \ \ (19)\)
and we define
\(\mathbf{f} \equiv A^{1/2}\mathbf{e} = \left(A^{1/2}\mathbf{e}_1 \quad A^{1/2}\mathbf{e}_1 \quad \cdots \right) \ \ \ \ \ (20)\)
We assume that \({A}\) is Hermitian and positive-definite, so that \({A^{1/2}}\) can be defined. Note that \({\mathbf{S} = \mathbf{e}^{\dagger}\mathbf{e} = \left(A^{-1/2}\mathbf{f}\right)^{\dagger}\left(A^{-1/2}\mathbf{f}\right) = \mathbf{f}^{\dagger}A^{-1}\mathbf{f} \implies A'' = \mathbf{f}\left(\mathbf{f}^{\dagger}A^{-1}\mathbf{f}\right)^{-1}\mathbf{f}^{\dagger}}\). Because \({A}\) is arbitrary, replace it with \({A^{-1}}\), and since \({\mathbf{f}^{\dagger}A\mathbf{f} = \mathbf{A}}\) with \({A_{ij} = \langle f_i \vert A\vert f_j\rangle}\):
\(\left(\mathbf{A}^{-1}\right)'' = \mathbf{f}\left(\mathbf{f}^{\dagger}A\mathbf{f}\right)^{-1}\mathbf{f}^{\dagger} = \mathbf{fA}^{-1}\mathbf{f}^{\dagger} \ \ \ \ \ (21)\)
As the basis \({V_n \rightarrow V}\), the inner projection \({\rightarrow \mathbf{A}^{-1}}\), else it is simply a finite basis approximation to the inverse. This is the operator inverse in terms of a matrix inverse. Since \({\mathbf{e}}\) was an arbitrary basis defining \({V_n}\), let \({\mathbf{f}}\) define n-dimensional subspace \({V_n'}\). Thus:
\(\mathbf{A}^{-1} \approx \mathbf{eA}^{-1}\mathbf{e}^{\dagger} = \sum\limits_{ij} e_i(\mathbf{e}^{\dagger}\mathbf{Ae})^{-1}_{ij}\mathbf{e}^*_j \ \ \ \ \ (22)\)
Thus the inner projection leads to an approximation for the projector. Let us define the (as of yet undefined) operator basis:
\(\mathbf{n} = (\mathbf{n}_1 \quad \mathbf{n}_2 \quad \mathbf{n}_3 \quad \cdots) \ \ \ \ \ (23)\)
Given that the binary product (compare with \({\langle x\vert y\rangle = x^*y}\) for vectors)
\(X^{\dagger} \cdot Y = (X\vert Y) = \langle 0 \vert \left[X^{\dagger},Y\right] \vert 0 \rangle \ \ \ \ \ (24)\)
then for our resolvent superoperator we have
\(\hat{R}(\omega) = (\hbar\omega\hat{1} - \hat{H})^{-1} = \mathbf{n}R(\omega)\mathbf{n}^{\dagger} = \sum\limits_{r,s} \mathbf{n}_r[R(\omega)]_{rs}\mathbf{n}_{s}^{\dagger} \ \ \ \ \ (25)\)
where \({\mathbf{n}_r}\) and \({\mathbf{n}_s^{\dagger}}\) are the analogues of \({\mathbf{e}}\) and \({\mathbf{e}^*}\) in operator space. Finally, if
\(R(\omega) = M(\omega)^{-1}, \qquad M(\omega) = \mathbf{n}^{\dagger} (\hbar\omega\hat{1} - \hat{H})\mathbf{n} \ \ \ \ \ (26)\)
then we have
\(\langle \langle B;A \rangle \rangle_{\omega} = B\cdot R(\omega)\cdot A = B \cdot \mathbf{n} R(\omega) \mathbf{n}^{\dagger} \cdot A \ \ \ \ \ (27)\)
which is the key to calculating approximations to response properties. The matrix M is determined once we have chosen an operator basis. This approximation depends on two things: 1) the basis \({\mathbf{n}}\) (and its truncations), and 2) the reference function, that is not the exact ground state. Any approximations to these two things are where we get out various response methods.