Publications

(36) L. Zhao, J. J. Goings, K. Wright, J. Nguyen, J. Kim, S. Johri, K. Shin, W. Kyoung, J. I. Fuks, J-K. K. Rhee, Y. M. Rhee, ‘‘Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers,’’ arXiv preprint, 2022, arXiv:2212.02482.

(35) A. W. Mills, J. J. Goings, D. Beck, C. Yang, X. Li, ‘‘Exploring Potential Energy Surfaces Using Reinforcement Machine Learning,’’ J. Chem. Inf. Model., 2022, 62, 13, 3169–3179.

(34) J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Degroote, C. Gidney, T. Shiozaki, R.Babbush, N. C. Rubin, ‘‘Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers,’’ PNAS, 2022, 119, e2203533119.

(33) T. E. O’Brien, M. Streif, N. C. Rubin, R. Santagati, Y. Su, W. J. Huggins, J. J. Goings, N. Moll, E. Kyoseva, M. Degroote, C. S. Tautermann, J. Lee, D. W. Berry, N. Wiebe, R Babbush, ‘‘Efficient quantum computation of molecular forces and other energy gradients,’’ Phys. Rev. Res., 4, 4, 043210.

(32) A. Lachowicz, E. H. Perez, N. S. Shuman, S. Ard, A. A. Viggiano, P. B. Armentrout, J. J. Goings, P. Sharma, X. Li, M. A. Johnson, ‘‘Determination of the SmO+ bond energy by threshold photodissociation of the cryogenically cooled ion,’’ J. Chem. Phys., 2021, 155, 174303.

(31) J. J. Goings, H. Hu, C. Yang, X. Li, ‘‘Reinforcement Learning Configuration Interaction,’’ J. Chem. Theory Comput., 2021, 17, 9, 5482–5491.

(30) W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore, ‘‘Role of Intact Hydrogen-Bond Networks in Multiproton-Coupled Electron Transfer,’’ J. Amer. Chem. Soc., 2020, 142, 52, 21842–21851.

(29) J. J. Goings, P. Li, Q. Zhu, S. Hammes-Schiffer, ‘‘Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state,’’ PNAS, 2020, 117, 43, 26626–26632.

(28) J. J. Goings, S. Hammes-Schiffer, ‘‘Nonequilibrium Dynamics of Proton-Coupled Electron Transfer in Proton Wires: Concerted but Asynchronous Mechanisms.,’’ ACS Cent. Sci., 2020, 6, 9, 1594–1601.

(27) E. Odella\(^*\), S. J. Mora\(^*\), B. L. Wadsworth\(^*\), J. J. Goings\(^*\), M. A. Gervaldo, L. E. Sereno, T. L Groy, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore, ‘‘Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires,’’ Chem. Sci., 2020, 11, 3820–3828.
\(^*\)Authors contributed equally to work

(26) J. J. Goings, S. Hammes-Schiffer, ‘‘Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics,’’ J. Amer. Chem. Soc., 2019, 141, 51, 20470–20479.

(25) E. Odella\(^*\), B. L. Wadsworth\(^*\), S. J. Mora\(^*\), J. J. Goings\(^*\), M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore, ‘‘Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems,’’ J. Amer. Chem. Soc., 2019, 141, 14057–14061.
\(^*\)Authors contributed equally to work

(24) D. B. Williams-Young, A. Petrone, S. Sun, T. F. Stetina, P. Lestrange, C. E. Hoyer, D. R. Nascimento, L. Koulias, A. Wildman, J. Kasper, J. J. Goings, F. Ding, A. E. DePrince III, E. F. Valeev, X. Li, ‘‘The Chronus Quantum Software Package,’’ WIREs Comput. Mol. Sci., 2019, e1436.

(23) E. R. Sayfutyarova, J. J. Goings, S. Hammes-Schiffer, ‘‘Electron-Coupled Double Proton Transfer in the Slr1694 BLUF Photoreceptor: A Multireference Electronic Structure Study,’’ J. Phys. Chem. B, 2019, 123, 439–447.

(22) J. J. Goings, C. R. Reinhardt, S. Hammes-Schiffer, ‘‘Propensity for Proton Relay and Electrostatic Impact of Protein Reorganization in Slr1694 BLUF Photoreceptor,’’ J. Amer. Chem. Soc., 2018, 140 (45), 15241–15251.

(21) E. Odella, S. J. Mora, B. L. Wadsworth, M. T. Huynh, J. J. Goings, P. A. Liddell, T. L. Groy, M. Gervaldo, L. E. Sereno, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore, ‘‘Controlling Proton-Coupled Electron Transfer in Bio-Inspired Artificial Photosynthetic Relays,’’ J. Amer. Chem. Soc., 2018, 140 (45), 15450–15460.

(20) D. Nguyen, J. J. Goings, H. A. Nguyen, J. Lyding, X. Li, M. Gruebele, ‘‘Orientation-dependent imaging of electronically excited quantum dots,’’ J. Chem. Phys., 2018, 148 (6), 064701.

Featured/cover article. Press release can be found here.

(19) J. J. Goings, P. J. Lestrange, X. Li, ‘‘Real-Time Time Dependent Electronic Structure Theory,’’ Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, e1341.

(18) F. Egidi, S. Sun, J. J. Goings, G. Scalmani, M. J. Frisch, X. Li, ‘‘Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations,’’ J. Chem. Theory. Comput., 2017, 13 (6), 2591–2603.

(17) J. J. Goings, F. Egidi, X. Li, ‘‘Current development of noncollinear electronic structure theory,’’ Int. J. Quant. Chem., 2017;00:e25398.

(16) J. J. Goings, D. B. Lingerfelt, X. Li, ‘‘Can Quantized Vibrational Effects Be Obtained from Ehrenfest Mixed Quantum-Classical Dynamics?,’’ J. Phys. Chem. Lett., 2016, 7, 5193–5197.

(15) D. Williams-Young, J. J. Goings, X. Li, ‘‘Accelerating Real-Time Time-Dependent Density Functional Theory with a Non-Recursive Chebyshev Expansion of the Quantum Propagator,’’ J. Chem. Theory Comput., 2016, 12 (11), 5333-5338.

(14) A. Petrone, J. J. Goings, X. Li, ‘‘Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies,’’ Phys. Rev. B 2016, 94 (16), 165402.

(13) J. J. Goings, J. M. Kasper, F. Egidi, S. Sun, X. Li, ‘‘Real time propagation of the exact two component time-dependent density functional theory,’’ J. Chem. Phys. 2016, 145 (10), 104107.

(12) F. Egidi, J. J. Goings, M. J. Frisch, X. Li, ‘‘A Direct Atomic-Orbital Based Relativistic Two-Component Linear Response Method for Calculating Excited State Fine Structures,’’ J. Chem. Theory Comput. 2016, 12 (8), 3711–3718.

(11) J. J. Goings, X. Li, ‘‘An Atomic Orbital Based Real-Time Time-Dependent Density Functional Theory for Computing Electronic Circular Dichroism Band Spectra,’’ J. Chem. Phys. 2016, 144 (23), 234102.

(10) L. Nienhaus\(^*\), J. J. Goings\(^*\), D. Nguyen, S. Wieghold, J. Lyding, X. Li, M. Gruebele, ‘‘Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory,’’ J. Amer. Chem. Soc. 2015, 137 (46), 14743–14750.
\(^*\)Authors contributed equally to work

(9) J. J. Goings, F. Ding, E. R. Davidson, X. Li, ‘‘Approximate Singly Excited States from a Two-Component Hartree-Fock Reference,’’ J. Chem. Phys. 2015, 143 (14), 144106.

(8) F. Ding, J. J. Goings, H. Liu, D. Lingerfelt, X. Li, ‘‘Ab Initio Two-Component Ehrenfest Dynamics,’’ J. Chem. Phys. 2015, 143 (11), 114105.

(7) B. Peng, P. J. Lestrange, J. J. Goings, M. Caricato, X. Li, ‘‘Energy-Specific Equation-of-Motion Coupled-Cluster Methods for High-Energy Excited States: Application to K-Edge X-ray Absorption Spectroscopy,’’ J. Chem. Theory Comput. 2015, 11 (9), 4146–4153.

(6) J. J. Goings, F. Ding., M. J. Frisch, X. Li, ‘‘Stability of the Complex Generalized Hartree-Fock Equations,’’ J. Chem. Phys. 2015, 142 (15), 154109.

(5) F. Ding, J. J. Goings, M. J. Frisch, X. Li, ‘‘Ab initio non-relativistic spin dynamics,’’ J. Chem. Phys. 2014, 141 (21), 214111.

(4) J. J. Goings, A. M. Schimpf, J. W. May, R. W. Johns, D. R. Gamelin, X. Li, ‘‘Theoretical Characterization of Conduction-Band Electrons in Photodoped and Aluminum-Doped Zinc Oxide (AZO) Quantum Dots,’’ J. Phys. Chem. C. 2014, 118 (46), 26584–26590.

(3) J. J. Goings, M. Caricato, M. Frisch, X. Li, ‘‘Assessment of Low-scaling Approximations to the Equation of Motion Coupled-Cluster Singles and Doubles Equations,’’ J. Chem. Phys. 2014, 141 (16), 164116.

(2) J. J. Goings, S. Ohlsen, K. Blaisdell, D. Schofield, ‘‘Sorption of H\(_2\) to Open Metal Sites in a Metal Organic Framework: A Symmetry Adapted Perturbation Analysis,’’ J. Phys. Chem. A. 2014, 118 (35), 7411–7417.

(1) J. J. Goings, F. Ding, X. Li, ‘‘Self-Consistent-Field using Direct Inversion in Iterative Subspace Method and Quasi-Newton Vectors,’’ Adv. Quantum Chem. Vol. 68, 2014, 77–86.