Coupled Cluster with Singles and Doubles (CCSD) in Python
Coupled cluster methods are among the most accurate electronic structure methods available today. For example, with a good choice for a basis, the CCSD(T) equations will give you the correct energy of a molecular system to chemical accuracy (~0.1 kcal/mol). They are also quite formidable to derive, and (in my opinion) to program. Which is why I only coded up CCSD!
Thankfully there are some wonderful resources available to understand the coupled cluster methods. I highly recommend Crawford and Schaefer’s “ An Introduction to Coupled Cluster Theory for Computational Chemists” (2000). I have yet to find a clearer and more complete explanation of coupled cluster theory. The derivations inside it are nasty, but once you get a grasp of diagrammatic techniques, it isn’t so bad :)
In order to understand coupled cluster a bit better, I recently programmed the CCSD energy and amplitude equations in Python. It is for a HeH+ molecule with a bond length of 0.9295 Angstrom, using an STO-3G basis — same system I’ve used before on this blog. The results match what Gaussian09 calculates as well, so I was pretty happy to see it work. As always, I’ve hard-coded the two-electron integrals and other SCF results into the program, so you can just focus on what CCSD does. The functions will look esoteric, and unless you’ve worked with coupled-cluster before, the program should NOT look intuitive or easy to understand — point is, don’t panic. But I’ve provided a reference Stanton (1991) that contains all the equations used. Between Stanton and Crawford, you can understand what is going on here. Read through the comments to get a better idea: the main idea is to take the results of an SCF calculation and apply them to a similarity transformation of the Hamiltonian. The transformed Hamiltonian now contains ‘excited’ determinants, which is the requirement for electron correlation — in other words you get a multi-reference quality calculation from a single reference (a Hartree-Fock calculation).
Anyway, here you have it:
(Special thanks to Junhao Li for pointing out bugs in the code! Everything should be correct now.)
#!/usr/bin/python
####################################
#
# CCSD ENERGY CALCULATION ON
# HeH+ / STO-3G / R = 0.9295 Ang
#
# Reference for Equations:
# Stanton, et al
# J. Chem. Phys 94 (6),
# 15 March 1991
#
####################################
from __future__ import division
import math
import numpy as np
####################################
#
# FUNCTIONS
#
####################################
# Return compound index given four indices
def eint(a,b,c,d):
if a > b: ab = a*(a+1)/2 + b
else: ab = b*(b+1)/2 + a
if c > d: cd = c*(c+1)/2 + d
else: cd = d*(d+1)/2 + c
if ab > cd: abcd = ab*(ab+1)/2 + cd
else: abcd = cd*(cd+1)/2 + ab
return abcd
# Return Value of spatial MO two electron integral
# Example: (12\vert 34) = tei(1,2,3,4)
def teimo(a,b,c,d):
return ttmo.get(eint(a,b,c,d),0.0e0)
####################################
#
# INITIALIZE ORBITAL ENERGIES
# AND TRANSFORMED TWO ELECTRON
# INTEGRALS
#
####################################
Nelec = 2 # we have 2 electrons in HeH+
dim = 2 # we have two spatial basis functions in STO-3G
E = [-1.52378656, -0.26763148] # molecular orbital energies
# python dictionary containing two-electron repulsion integrals
ttmo = {5.0: 0.94542695583037617, 12.0: 0.17535895381500544, 14.0: 0.12682234020148653, 17.0: 0.59855327701641903, 19.0: -0.056821143621433257, 20.0: 0.74715464784363106}
ENUC = 1.1386276671 # nuclear repulsion energy for HeH+ -- constant
EN = -3.99300007772 # SCF energy
####################################################
#
# CONVERT SPATIAL TO SPIN ORBITAL MO
#
####################################################
# This makes the spin basis double bar integral (physicists' notation)
spinints=np.zeros((dim*2,dim*2,dim*2,dim*2))
for p in range(1,dim*2+1):
for q in range(1,dim*2+1):
for r in range(1,dim*2+1):
for s in range(1,dim*2+1):
value1 = teimo((p+1)//2,(r+1)//2,(q+1)//2,(s+1)//2) * (p%2 == r%2) * (q%2 == s%2)
value2 = teimo((p+1)//2,(s+1)//2,(q+1)//2,(r+1)//2) * (p%2 == s%2) * (q%2 == r%2)
spinints[p-1,q-1,r-1,s-1] = value1 - value2
#####################################################
#
# Spin basis fock matrix eigenvalues
#
#####################################################
fs = np.zeros((dim*2))
for i in range(0,dim*2):
fs[i] = E[i//2]
fs = np.diag(fs) # put MO energies in diagonal array
#######################################################
#
# CCSD CALCULATION
#
#######################################################
dim = dim*2 # twice the dimension of spatial orbital
# Init empty T1 (ts) and T2 (td) arrays
ts = np.zeros((dim,dim))
td = np.zeros((dim,dim,dim,dim))
# Initial guess T2 --- from MP2 calculation!
for a in range(Nelec,dim):
for b in range(Nelec,dim):
for i in range(0,Nelec):
for j in range(0,Nelec):
td[a,b,i,j] += spinints[i,j,a,b]/(fs[i,i] + fs[j,j] - fs[a,a] - fs[b,b])
# Make denominator arrays Dai, Dabij
# Equation (12) of Stanton
Dai = np.zeros((dim,dim))
for a in range(Nelec,dim):
for i in range(0,Nelec):
Dai[a,i] = fs[i,i] - fs[a,a]
# Stanton eq (13)
Dabij = np.zeros((dim,dim,dim,dim))
for a in range(Nelec,dim):
for b in range(Nelec,dim):
for i in range(0,Nelec):
for j in range(0,Nelec):
Dabij[a,b,i,j] = fs[i,i] + fs[j,j] - fs[a,a] - fs[b,b]
# Stanton eq (9)
def taus(a,b,i,j):
taus = td[a,b,i,j] + 0.5*(ts[a,i]*ts[b,j] - ts[b,i]*ts[a,j])
return taus
# Stanton eq (10)
def tau(a,b,i,j):
tau = td[a,b,i,j] + ts[a,i]*ts[b,j] - ts[b,i]*ts[a,j]
return tau
# We need to update our intermediates at the beginning, and
# at the end of each iteration. Each iteration provides a new
# guess at the amplitudes T1 (ts) and T2 (td), that *hopefully*
# converges to a stable, ground-state, solution.
def updateintermediates(x):
if x == True:
# Stanton eq (3)
Fae = np.zeros((dim,dim))
for a in range(Nelec,dim):
for e in range(Nelec,dim):
Fae[a,e] = (1 - (a == e))*fs[a,e]
for m in range(0,Nelec):
Fae[a,e] += -0.5*fs[m,e]*ts[a,m]
for f in range(Nelec,dim):
Fae[a,e] += ts[f,m]*spinints[m,a,f,e]
for n in range(0,Nelec):
Fae[a,e] += -0.5*taus(a,f,m,n)*spinints[m,n,e,f]
# Stanton eq (4)
Fmi = np.zeros((dim,dim))
for m in range(0,Nelec):
for i in range(0,Nelec):
Fmi[m,i] = (1 - (m == i))*fs[m,i]
for e in range(Nelec,dim):
Fmi[m,i] += 0.5*ts[e,i]*fs[m,e]
for n in range(0,Nelec):
Fmi[m,i] += ts[e,n]*spinints[m,n,i,e]
for f in range(Nelec,dim):
Fmi[m,i] += 0.5*taus(e,f,i,n)*spinints[m,n,e,f]
# Stanton eq (5)
Fme = np.zeros((dim,dim))
for m in range(0,Nelec):
for e in range(Nelec,dim):
Fme[m,e] = fs[m,e]
for n in range(0,Nelec):
for f in range(Nelec,dim):
Fme[m,e] += ts[f,n]*spinints[m,n,e,f]
# Stanton eq (6)
Wmnij = np.zeros((dim,dim,dim,dim))
for m in range(0,Nelec):
for n in range(0,Nelec):
for i in range(0,Nelec):
for j in range(0,Nelec):
Wmnij[m,n,i,j] = spinints[m,n,i,j]
for e in range(Nelec,dim):
Wmnij[m,n,i,j] += ts[e,j]*spinints[m,n,i,e] - ts[e,i]*spinints[m,n,j,e]
for f in range(Nelec,dim):
Wmnij[m,n,i,j] += 0.25*tau(e,f,i,j)*spinints[m,n,e,f]
# Stanton eq (7)
Wabef = np.zeros((dim,dim,dim,dim))
for a in range(Nelec,dim):
for b in range(Nelec,dim):
for e in range(Nelec,dim):
for f in range(Nelec,dim):
Wabef[a,b,e,f] = spinints[a,b,e,f]
for m in range(0,Nelec):
Wabef[a,b,e,f] += -ts[b,m]*spinints[a,m,e,f] + ts[a,m]*spinints[b,m,e,f]
for n in range(0,Nelec):
Wabef[a,b,e,f] += 0.25*tau(a,b,m,n)*spinints[m,n,e,f]
# Stanton eq (8)
Wmbej = np.zeros((dim,dim,dim,dim))
for m in range(0,Nelec):
for b in range(Nelec,dim):
for e in range(Nelec,dim):
for j in range(0,Nelec):
Wmbej[m,b,e,j] = spinints[m,b,e,j]
for f in range(Nelec,dim):
Wmbej[m,b,e,j] += ts[f,j]*spinints[m,b,e,f]
for n in range(0,Nelec):
Wmbej[m,b,e,j] += -ts[b,n]*spinints[m,n,e,j]
for f in range(Nelec,dim):
Wmbej[m,b,e,j] += -(0.5*td[f,b,j,n] + ts[f,j]*ts[b,n])*spinints[m,n,e,f]
return Fae, Fmi, Fme, Wmnij, Wabef, Wmbej
# makeT1 and makeT2, as they imply, construct the actual amplitudes necessary for computing
# the CCSD energy (or computing an EOM-CCSD Hamiltonian, etc)
# Stanton eq (1)
def makeT1(x,ts,td):
if x == True:
tsnew = np.zeros((dim,dim))
for a in range(Nelec,dim):
for i in range(0,Nelec):
tsnew[a,i] = fs[i,a]
for e in range(Nelec,dim):
tsnew[a,i] += ts[e,i]*Fae[a,e]
for m in range(0,Nelec):
tsnew[a,i] += -ts[a,m]*Fmi[m,i]
for e in range(Nelec,dim):
tsnew[a,i] += td[a,e,i,m]*Fme[m,e]
for f in range(Nelec,dim):
tsnew[a,i] += -0.5*td[e,f,i,m]*spinints[m,a,e,f]
for n in range(0,Nelec):
tsnew[a,i] += -0.5*td[a,e,m,n]*spinints[n,m,e,i]
for n in range(0,Nelec):
for f in range(Nelec,dim):
tsnew[a,i] += -ts[f,n]*spinints[n,a,i,f]
tsnew[a,i] = tsnew[a,i]/Dai[a,i]
return tsnew
# Stanton eq (2)
def makeT2(x,ts,td):
if x == True:
tdnew = np.zeros((dim,dim,dim,dim))
for a in range(Nelec,dim):
for b in range(Nelec,dim):
for i in range(0,Nelec):
for j in range(0,Nelec):
tdnew[a,b,i,j] += spinints[i,j,a,b]
for e in range(Nelec,dim):
tdnew[a,b,i,j] += td[a,e,i,j]*Fae[b,e] - td[b,e,i,j]*Fae[a,e]
for m in range(0,Nelec):
tdnew[a,b,i,j] += -0.5*td[a,e,i,j]*ts[b,m]*Fme[m,e] + 0.5*td[b,e,i,j]*ts[a,m]*Fme[m,e]
continue
for m in range(0,Nelec):
tdnew[a,b,i,j] += -td[a,b,i,m]*Fmi[m,j] + td[a,b,j,m]*Fmi[m,i]
for e in range(Nelec,dim):
tdnew[a,b,i,j] += -0.5*td[a,b,i,m]*ts[e,j]*Fme[m,e] + 0.5*td[a,b,j,m]*ts[e,i]*Fme[m,e]
continue
for e in range(Nelec,dim):
tdnew[a,b,i,j] += ts[e,i]*spinints[a,b,e,j] - ts[e,j]*spinints[a,b,e,i]
for f in range(Nelec,dim):
tdnew[a,b,i,j] += 0.5*tau(e,f,i,j)*Wabef[a,b,e,f]
continue
for m in range(0,Nelec):
tdnew[a,b,i,j] += -ts[a,m]*spinints[m,b,i,j] + ts[b,m]*spinints[m,a,i,j]
for e in range(Nelec,dim):
tdnew[a,b,i,j] += td[a,e,i,m]*Wmbej[m,b,e,j] - ts[e,i]*ts[a,m]*spinints[m,b,e,j]
tdnew[a,b,i,j] += -td[a,e,j,m]*Wmbej[m,b,e,i] + ts[e,j]*ts[a,m]*spinints[m,b,e,i]
tdnew[a,b,i,j] += -td[b,e,i,m]*Wmbej[m,a,e,j] + ts[e,i]*ts[b,m]*spinints[m,a,e,j]
tdnew[a,b,i,j] += td[b,e,j,m]*Wmbej[m,a,e,i] - ts[e,j]*ts[b,m]*spinints[m,a,e,i]
continue
for n in range(0,Nelec):
tdnew[a,b,i,j] += 0.5*tau(a,b,m,n)*Wmnij[m,n,i,j]
continue
tdnew[a,b,i,j] = tdnew[a,b,i,j]/Dabij[a,b,i,j]
return tdnew
# Expression from Crawford, Schaefer (2000)
# DOI: 10.1002/9780470125915.ch2
# Equation (134) and (173)
# computes CCSD energy given T1 and T2
def ccsdenergy():
ECCSD = 0.0
for i in range(0,Nelec):
for a in range(Nelec,dim):
ECCSD += fs[i,a]*ts[a,i]
for j in range(0,Nelec):
for b in range(Nelec,dim):
ECCSD += 0.25*spinints[i,j,a,b]*td[a,b,i,j] + 0.5*spinints[i,j,a,b]*(ts[a,i])*(ts[b,j])
return ECCSD
#================
# MAIN LOOP
# CCSD iteration
#================
ECCSD = 0
DECC = 1.0
while DECC > 0.000000001: # arbitrary convergence criteria
OLDCC = ECCSD
Fae,Fmi,Fme,Wmnij,Wabef,Wmbej = updateintermediates(True)
tsnew = makeT1(True,ts,td)
tdnew = makeT2(True,ts,td)
ts = tsnew
td = tdnew
ECCSD = ccsdenergy()
DECC = abs(ECCSD - OLDCC)
print "E(corr,CCSD) = ", ECCSD
print "E(CCSD) = ", ECCSD + ENUC + EN
Boom: -2.8626 Hartrees :)