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The goal of all real-time electronic dynamics methods is to solve the time-dependent

Schrödinger equation (TDSE)

i~
∂

∂t
ψ(t) = H(t)ψ(t) (1)

where H(t) is the time-dependent Hamiltonian an ψ(t) is the time-dependent wave function.

The goal of the Magnus expansion is to find a general solution for the time-dependent wave

function in the case where H is time-dependent, and, more crucially, when H does not

commute with itself at different times, e.g. when [H(t1), H(t2)] 6= 0. In the following we will

follow closely the notation of Blanes, et al.1. First, for simplicity we redefine H̃(t) ≡ −i
~ H(t)

and introduce a scalar λ = 1 as a bookkeeping device, so that

∂

∂t
ψ(t) = λ

−i
~
H(t)ψ(t) (2)

= λH̃(t)ψ(t) (3)

At the heart of the Magnus expansion is the idea of solving Eq. (3) by using the quantum

propagator U(t, t0) that connects wave functions at different times, e.g.

ψ(t) = U(t, t0)ψ(t0) (4)

Furthermore, the Magnus expansion assumes that U(t, t0) can be represented as an expo-

nential,

U(t, t0) = exp (Ω(t, t0)) (5)

This yields the modified TDSE

∂

∂t
U(t, t0) = λH̃(t)U(t, t0); U(t0, t0) = I (6)
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Now, for scalar H and U , Eq. (6) has a simple solution, namely

U(t, t0) = exp

λ t∫
t0

H̃(t′)dt′

 (7)

However, if H and U are matrices this is not necessarily true. In other words, for a given

matrix A the following expression does not necessarily hold:

∂

∂t
(exp (A(t))) =

(
∂

∂t
A(t)

)
exp (A(t)) = exp (A(t))

(
∂

∂t
A(t)

)
(8)

because the matrix A and its derivatives do not necessarily commute. Instead, Magnus2

proved that in general Ω(t, t0) satisfies

∂

∂t
(Ω(t, t0)) = λH̃(t) + λ

∞∑
k=1

(−1)k
Bk

k!

k−times︷ ︸︸ ︷
[Ω(t, t0), [· · · [Ω(t, t0), H̃(t)]] · · · ]; Ω(t0, t0) = 0 (9)

where Bk are the Bernoulli numbers. This equation may be solved by integration, and

iterative substitution of Ω(t, t0). While it may appear that we are worse off than when we

started, collecting like powers of λ (and setting λ = 1) allows us to obtain a power-series

expansion for Ω(t, t0),

Ω(t, t0) =

t∫
t0

H̃1dt1 (10)

+
1

2

t∫
t0

dt1

t1∫
t0

dt2

[
H̃1, H̃2

]
(11)

+
1

6

t∫
t0

dt1

t1∫
t0

dt2

t2∫
t0

dt3

(
[H̃1, [H̃2, H̃3]] + [H̃3, [H̃2, H̃1]]

)
+ · · · (12)

This is the Magnus expansion, and here we have given up to the third-order terms. We

have also made the notational simplification that H̃k = H̃(tk). This is the basis for nearly all

numerical methods to integrate the many-body TDSE in molecular physics. Each subsequent

order in the Magnus expansion is a correction that accounts for the proper time-ordering of

the Hamiltonian.

The Magnus expansion in Eq. (10) immediately suggests a route to many numerical

integrators. The simplest would be to approximate the first term by

t+∆t∫
t

H̃1dt1 ≈ ∆tH̃(t) (13)
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leading to a forward-Euler-like time integrator of

ψ(t+ ∆t) = exp
(

∆tH̃(t)
)
ψ(t) (14)

which we can re-write as

ψ(tk+1) = exp
(

∆tH̃(tk)
)
ψ(tk) (15)

where subscript k gives the node of the time-step stencil. This gives a first-order method with

error O(∆t). A more accurate second-order method can be constructed by approximating

the first term in Eq. (10) by the midpoint rule, leading to an O(∆t2) time integrator

ψ(tk+1) = exp
(

∆tH̃(tk+1/2)
)
ψ(tk) (16)

Modifying the stencil to eliminate the need to evaluate the Hamiltonian at fractional time

steps (e.g. change time step to 2∆t) leads to the modified midpoint unitary transformation

(MMUT) method3,4

ψ(tk+1) = exp
(

2∆tH̃(tk)
)
ψ(tk−1) (17)

which is a leapfrog-type unitary integrator. Note that the midpoint method assumes H̃ is

linear over its time interval, and the higher order terms (containing the commutators) in this

approximation to Eq. (10) go to zero. There are many other types of integrators based off

the Magnus expansion that can be found in the literature5,6. The key point for all of these

integrators is that they are symplectic, meaning they preserve phase-space relationships.

This has the practical effect of conserving energy (within some error bound) in long-time

dynamics, whereas non-symplectic methods such as Runge-Kutta will experience energetic

“drift” over long times. A final note: in each of these schemes it is necessary to evaluate

the exponential of the Hamiltonian. In real-time methods, this requires computing a matrix

exponential. This is not a trivial task, and, aside from the construction of the Hamiltonian

itself, is often the most expensive step in the numerical solution of the TDSE. However,

many elegant solutions to the construction of the matrix exponential can be found in the

literature.
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