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Kinetic balance was discovered when early attempts at relativistic SCF cal-
culations failed to converge to a bound state. Often, the energy was too low
because of the negative energy continuum. The crux of the problem was that
the four components of the spinor in relativistic methods were each allowed
to vary independently. In other words, scientists treated each component with
its own, independent basis without regard to how the components depended
on each other. This problem was eventually solved by paying attention to the
non-relativistic limit of the kinetic energy, and noting that the small and large
components of the four-spinor are not independent. There is, in fact, a coupling
that we refer to as “kinetic balance”. I’ll show you how it works.

First, as you may have guessed, we only need to consider the one-electron
operator. This is the matrix form of the Dirac equation, and it contains (in
addition to other terms) the contributions to the kinetic energy. Written as a
pair of coupled equations, we have[

V LL − ESLL
]
cL + cΠLScS = 0

cΠSLcL +
[
V SS − (2mc2 + E)SSS

]
cS = 0

(1)

Where V LL = 〈χL|V |χL〉, SLL = 〈χL|χL〉, and ΠLS = 〈χL| − ih̄σ ·∇|χS〉,
and so on. These are the potential, overlap, and momentum terms of the Dirac
equation in a basis |χ〉.

Now, if we look at the second of the two paired equations, we note that
for potentials of chemical interest (e.g. molecular or atomic), V SS is negative
definite. We also know that when we solve the equation, we are looking for
and energy above the negative energy continuum, which is to say we want E >
−2mc2. Since the overlap is positive definite, putting all of these constraints
together mean that we have a nonsingular matrix (and therefore invertible!)
matrix in the second of our coupled equations. We can rewrite the second
equation as

cS =
[
(2mc2 + E)SSS − V SS

]−1
cΠSLcL (2)

Substituting this expression back into the first (top) equation yields[
V LL − ESLL

]
cL + cΠLS

[
(2mc2 + E)SSS − V SS

]−1
cΠSLcL = 0 (3)
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This form is very useful for analysis. Now, we are going to use the matrix
relation

(A−B)−1 = A−1 +A−1B(A−B)−1 (4)

with A = 2mc2SSS and B = V SS − ESSS . This leads to the rather long
expression [

V LL − ESLL + 1
2mΠLS

[
SSS

]−1
ΠSL

]
cL = · · ·

· · · = 1
2mΠLS

[
SSS

]−1 [
V SS − ESSS

] [
V SS − (2mc2 + E)SSS

]−1
ΠSLcL

(5)
Why this ridiculous form? Look closely at each side and their dependence on
the speed of light, c. The left hand side has the c0 terms, and the right hand
side has the c−2 terms. Since the non relativistic limit is found when the speed
of light is infinite (c → ∞), the whole right hand side goes to zero. This gives
us [

V LL − ESLL +
1

2m
ΠLS

[
SSS

]−1
ΠSL

]
cL = 0 (6)

Now, if this is indeed the true non-relativistic limit, then we find that our kinetic
energy term TLL is given by

TLL =
1

2m
ΠLS

[
SSS

]−1
ΠSL (7)

Or, more explicitly,

TLLµν =
−h̄2

2m

∑
κλ

〈χLµ |σ ·∇|χSκ〈
[
SSS

]−1

κλ
〈χSλ |σ ·∇|χLν 〉 (8)

Where that inner part, |χSκ〈
[
SSS

]−1

κλ
〈χSλ |, is an inner projection onto the small

component basis space. Less formally, the small component is the “mathemat-
ical glue” that connects the two momentum operators. If the small component
spans the same space as the momentum operators in the large component space,
{σ · ∇χLµ}, then that inner projection just becomes the identity. This means
that the expression becomes

Tµν =
−h̄2

2m
〈χLµ |(σ ·∇)(σ ·∇)|χLν 〉 =

−h̄2

2m
〈χLµ |∇2|χLν 〉 (9)

Which is the kinetic energy term in the non-relativistic formulation! (N.B. We
used the relation (σ ·∇)(σ ·∇) = ∇2).

So, when we set up our relativistic calculations, as long as we have the
constraint that

χSµ = (σ · p)χLµ (10)

Then we will find that we recover the correct non-relativistic limit of our equa-
tions. The basis is called “kinetically balanced”, and we won’t collapse to ener-
gies lower than −2mc2.
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A few stray observations before we finish. First, if we enforce the relation be-
tween small and large component basis functions, then we find that ΠSL = SSS

and ΠLS = 2mTLL = 2mT . Second, this constraint actually maximizes kinetic
energy, and any approximation that does not satisfy the kinetic balance condi-
tion will lower the energy. This was weird to me coming from the non relativis-
tic Hartree-Fock background, where variationally, if you remove basis functions
you raise the energy. The thing is that when doing relativistic calculations, you
aren’t bounded from below like their non-relativistic counterparts. While you
can get variational stability, you are actually doing an “excited state” calcula-
tion (I am using the term “excited state” very loosely). Kind of odd, but the
negative energy continuum does exist, and was a big factor in the predicting
the existence of antimatter.

Finally, modern methods of relativistic electronic structure theory make
use of the kinetic balance between large and small component basis functions
to eliminate the small component completely. These are called “Dirac-exact”
methods. One such example is NESC, or Normalized Elimination of the Small
Component. In addition to reproducing the Dirac equation exactly, they have
numerous computational benefits, as well as easily allowing for most (if not all)
non-relativistic correlated methods to be applied directly. Thus after doing an
NESC calculation, you get relativistic “orbitals” which can immediately be used
in, say, a coupled cluster calculation with no computational modification.
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