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Goal: physical insight into reaction dynamics

Roadmap

ab initio 
molecular 
dynamics

Machine 
learning

Conceptual 
chemistry+ =

data → model → interpretation → insight! 

data model insight

interpretation



Molecular dynamics
Simulate molecules or materials in time 

1. Chemical reaction rates 


2. Reaction yields


3. Mechanisms


4. (Non-)equilibrium properties

JJG; Hammes-Schiffer, S. JACS. 2019.

Active site of BLUF photoreceptor

Generates lots of data (position and velocity at each time point)


Much of current MD seeks better ways to connect raw trajectory data to 
experimental observables and physical insight.

for classical MD on a protein (10,000 atoms) for 1 nanosecond:


e.g. 104 atoms x 106 time steps x 6 coords/atom x 64 bit ~ 0.5 TB



Flavors of molecular dynamics

Electrons Nuclei Accuracy Cost

Include different physics for different purposes
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Proton-coupled electron transfer (PCET) theory

HDe Dp Ap Ae

—
PT

ET

Key idea: motion of protons and electrons are not independent (coupled)


Many variations of PCET:

• Do the electrons & protons involve same or different donors/acceptors?

• Do the electrons & protons move in same or different directions?

• Do the electrons & protons move together or sequentially?

• Are multiple electrons and/or protons involved?


Quantum mechanical effects of electrons and proton(s)?


Different timescales and couplings among electrons, protons, solvent, 
environment, donor-acceptor modes, etc.



TyrZ

His Asn

ET

e-

Water splitting:

2H2O + light → 4H+

 + O2

to P680+⦁

Oxidation of TyrZ

without PT 1.47 V vs NHE
with PT 1.10 V vs NHE

no PCET, no photosynthesis!

PT
PT?

PCET in photosystem II



Inspired by the Tyr/His redox relay in photosystem II, set out to create 
redox-active molecules to drive proton translocation.

photosystem II

[BIP-H]0 [BIP-H]+•

benzimidazolephenol (BIP) constructs

Simplest case: reversible PCET upon oxidation of phenol in BIP.

Moore et. al, JPCB, 2010, 114, 14450

Imitating nature: bioinspired systems for PCET 

How do the molecular motions influence this process?



ab initio molecular dynamics

J. Chem. Phys. 88, 4535 (1988); https://doi.org/10.1063/1.453761

Int. J. Quantum Chem. 2016, 116 (10), 762–771. https://doi.org/10.1002/qua.25049

Ensemble of trajectories

• 240 independent, classical trajectories


• initial coordinates/momenta from neutral, 
but propagate in the oxidized state


• B3LYP-D3(BJ)/6-31G**


• gas phase


• run for at least 300 fs with 0.5 fs timestep


• trajectory gives ~ 0.5 GB data

⊕H+

After oxidation, how long until proton transfer?

What are the molecular motions that facilitate this process?

https://doi.org/10.1063/1.453761
https://doi.org/10.1002/qua.25049


Movie time



All 240 trajectories show proton transfer within ~300 fs.


Proton transfer appears to follow a bimodal distribution (more on this later).

Proton transfer (PT) after oxidation

A B



Limitations for human understanding
Making sense of vast amounts of data

Statistics certainly help summarize the distribution of data (PT times)


Statistics also help connect simulation to experiment


Is there a way to obtain more information from the data we generated?


We would like to know: 

• What physical motions correlate with proton transfer time? 


• How does the molecule respond dynamically to oxidation?


• Why is the distribution of proton transfer times bimodal? Is this noise, 
or is there something more?

Where do we start looking?


Can we use machine learning to point out places to look?
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Universal approximation theorem
A neural network with a single finite-width hidden layer can approximate 
any continuous real function to arbitrary precision. 

F(q)
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Universal approximation theorem

Two goals:

1. Find a function  to compute proton transfer 
time  as a function of atomic coordinates .

F(q)
PT q

2. Given the function, explain predictions to determine 
important structural changes during reaction.

F(q)

q

PTOur goal is NOT to replace ab initio molecular dynamics.


Our goal is NOT to quantitatively predict all PT times for all conditions.

We want to use machine learning to assist in the 
interpretation of complex molecular dynamics.

Neural nets are function-generators!



F(x) = wTx + bF(x)

1

x1

x2

b

w1

w2

Linear regression

Neural networks generalize regression

F(x) = w1 ⋅ x1 + w2 ⋅ x2 + 1 ⋅ b



F(x) = σ(wTx + b)

F(x)

1

x1

x2

b

w1

w2

σ
1

σ(h) =
1

1 + e−h

Logistic regression (generalized linear model)

F(x) = wT x + bF (x)

1

x1

x2

b

w1

w2

Linear regression



F(x) = wT
2 σ(WT

1 x + b1) + b2

F(x)
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Shallow neural network (nonlinear regression)

F(x) = wT x + bF (x)
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F(x) = σ(wT x + b)
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Linear regression Logistic regression
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F(x) = wT
3 σ(WT
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1 x + b1) + b2) + b3

Deep neural network (nonlinear regression)

Linear regression Logistic regression Shallow neural network



Training the network (optimize weights to minimize error)

Feedforward neural network

E(x, y) =
1
2 (F(x) − y)2

W(n+1)
1 = W(n)

1 − α
∂E

∂W(n)
1

y ≈ F(x) = wT
3 σ(WT

2 σ(WT
1 x + b1) + b2) + b3

Given a network:

And an error function:

Optimize weights via steepest descent.

Gradients are computed with backpropagation…

which is just computer-science jargon for the chain rule. 



Feature selection and representation

Normal mode coordinates
Atomic coordinates in Cartesian coordinates are strongly coupled, and 
sensitive to rotations, translations, etc.

Molecular normal mode basis maps motions to an orthonormal (i.e. 
independent) basis q.

Now the motions of the molecule can be decomposed into 
independent features!

For use in statistical models, we want features to be independent



Generating data
Given coordinates and velocity, how long until PT?

Time to PT q1 q2 … p1 p2 …

10 -0.1 0.1 … 0.2 -0.4 …

8 0.2 -0.3 … 0.1 -0.2 …

… … … … … … …

0 0.5 -0.1 … -0.2 0.3 …

Real time

Time to PT

42 fs 44 fs 46 fs 48 fs

6 fs 4 fs 2 fs 0 fs

For each 
trajectory:
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Generating data
Given coordinates and velocity, how long until PT?

Time to PT q1 q2 … q144

10 -0.1 0.1 … 0.2

8 0.2 -0.3 … 0.1

… … … … …

0 0.5 -0.1 … -0.2

Real time

Time to PT
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6 fs 4 fs 2 fs 0 fs

For each 
trajectory:



Building the model

Grid search over hyperparameters (number layers, number neurons, etc.)

shuffle 
and split

80%

10%
10%

test

validation

training

all data

validationtraining

train model with: evaluate performance 
with:

once model selected, 
report results with:

test

Final model has 3 layers, 768 neurons per layer, with 25% dropout.

*training data 
used to 
renormalize 
(scale) features



Preventing overfitting
Importance of dropout
We don’t want our model to just memorize the data. That’s not useful.
Dropout randomly turns off neurons during training, forcing the model to 
learn alternate representations.

= neuron turned of

Dropout example

Sweet spot is generally where validation error is 
slightly higher than training error



Out-of-sample predictions

What factors does the model take into 
account to result in this accuracy?



Accuracy versus explainability
Simple models are easy to explain, like linear models

E =
p2

2m
+

1
2

kq2

Why this harmonic oscillator has an energy  is a simple question.E

Other complicated mathematical models are not so obvious to explain.

Why does this model predict a correlation energy of  ?Ecorr
NEO−CCSD



Accuracy versus explainability
Generally, the more complex the equation, the less human-interpretable 
it becomes (black box).

This is usually fine if you want an accurate result, but often you want (or 
need) to know why a particular result was obtained.
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Why? Legally, you have a right to know.


• A ML model predicts you are at risk for heart disease. Why? What 
factors can you adjust to change your lot?



Accuracy versus explainability
Generally, the more complex the equation, the less human-interpretable 
it becomes (black box).

This is usually fine if you want an accurate result, but often you want (or 
need) to know why a particular result was obtained.

Machine learning models are no exception.

For example:


• A bank uses a ML model to evaluate you for a loan. You were denied. 
Why? Legally, you have a right to know.


• A ML model predicts you are at risk for heart disease. Why? What 
factors can you adjust to change your lot?

Because of this importance, several techniques have been 
devised to extract meaning from any machine-learned model.



Time to PT q1 q2 … q144

10 -0.1 0.1 … 0.2

8 0.2 -0.3 … 0.1

… … … … …

0 0.5 -0.1 … -0.2

What features are most important?

Permutation importance

1. Get a trained model.


2. Shuffle the values in a single column and compute 
predictions. 


3. Use these predictions and the true target values to calculate 
how much error was introduced by shuffling. This error 
measures the importance of the shuffled feature.


4. Return the data to the original order (undo step 2). Rinse and 
repeat for each column.



https://eli5.readthedocs.io/en/latest/index.html

import eli5

from eli5.sklearn import PermutationImportance


perm = PermutationImportance(model,random_state=200,n_iter=200).fit(x_test,y_test)

explanation = eli5.explain_weights(perm, feature_names = x_test.columns.tolist())


Permutation importance in 4 lines
Once you have a trained  model:



A B
What features does the model most rely on?

Permutation importance

we will look at 
modes in detail in a 
few slides!



• SHAP (SHapley Additive exPlanations) is a game theoretic approach 
to explain the output of any machine learning model. 


• Based on Shapley values (1951), which are a solution concept from 
game theory. SHAP values tell you which input feature contributed the 
most to a prediction. (Nobel prize in economics 2012!)


• SHAP values assign each input feature a value, that, when added 
together, results in the predicted output of that model.

SHAP values (SHapley Additive exPlanations)

Lundberg, S. M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. ANIPS 30 (2017).



• SHAP values are local additive:


• Local: SHAP values are assigned to a single prediction/instance 


• Additive: sum of features’ SHAP values sums to total prediction


• In principle, takes exponential amount of time to assign SHAP values


• Recent algorithmic improvements (here at UW!) overcome these issues

SHAP values (SHapley Additive exPlanations)

Lundberg, S. M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. ANIPS 30 (2017).



Trajectory #151, initial coordinates

Individual predictions

(fs)

amu ⋅ Å

we will look at 
modes in detail in a 
few slides!

M
od

e 
#



A B
Summary of SHAP values

Taken for random sample of 500 
data points, we see modes the 
model deems “important.”

Consistent with permutation 
testing, mode #5 has a high 
degree of significance, followed 
by modes #119 and #24.

We will look at these three 
modes more closely, and see 
what insights can be found.



A B

Modes of oxidized BIP
Mode #5 most significant, followed by modes #24 and #119

A

B

C

Mode 5 

72 cm-1


phenol-
benzimidazole bend

Mode 24 

356 cm-1


donor-acceptor 
mode

Mode 119 

2420 cm-1


proton stretch

A B



Mode #5: phenol-benzimidazole bend
Trajectories start strongly displaced 
along this mode (relatively speaking)


As reaction progresses, molecule 
reorganizes — model identifies inner 
sphere reorganization mode

strong linear 
correlation



A B

N

N

O

H

H

N

N

O

H
N

H

mode #5

RMSD align neutral and oxidized

Obtain ΔX, map onto normal modes q

Mode #5 dominates inner sphere reorganization



Inner sphere reorganization

Mode 5 

En
er

gy

neutral

oxidized



Mode 119: proton stretch

strong displacement, 
proton is transferring

Model identifies proton stretch as 
significant


Not too surprising, and from the SHAP 
values we see that it becomes 
important as the proton is transferring, 
but not before.

modest displacements have 
little impact on model output



Mode 24: donor-acceptor vibration
Vibrational coherence along donor-acceptor mode

Mode #24: 356 cm-1 corresponding to period of ~94 fs

94 fs 94 fs 94 fs

46 fs 140 fs 234 fs

46 fs

140 fs

234 fs

Oxidation displaces 
ensemble along mode 24



Motion along donor-acceptor mode

neutral

oxidized

proton transfer



neutral

oxidized

proton transfer

Motion along donor-acceptor mode



neutral

oxidized

proton transfer

Motion along donor-acceptor mode



Conclusions

1. ab initio molecular dynamics to simulate PCET dynamics


2. Use ML to distill large amount of data into meaningful insights


3. Model to tell us where to look, and then we can follow up with 
additional questions and investigations


4. Identified inner-sphere reorganization modes and vibrational 
coherence along the donor-acceptor mode

Goal: physical insight into proton transfer dynamics



Before we go

https://christophm.github.io/interpretable-ml-book/



Before we go

https://www.kaggle.com/learn/machine-learning-explainability



In case you want to read more…
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SHAP values
Do I have COVID-19?

10060400

ϕF =
1
2

[{F} − {}] +
1
2

[{F, C} − {C}]

Say you have a fever and cough:

ϕF =
1
2

[80 − 50] +
1
2

[100 − 70] = 30

ϕC =
1
2

[{C} − {}] +
1
2

[{F, C} − {F}] ϕC =
1
2

[70 − 50] +
1
2

[100 − 80] = 20

{} = 50

{F} = 80

{C} = 70

{F, C} = 100

prediction = baseline + ϕF + ϕC = 50 + 30 + 20 = 100

Marginal contributions:


