Generalized Hartree Fock:
Symmetry breaking and magnetic ordering



Hartree-Fock seeks to minimize the energy of a
single Slater Determinant (iIndependent particle model, IPM)
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The equality holds when the wave function Is variationally optimum.

The Fock operator Is the exact electronic Hamiltonian in the [PM.

In general, we expect that our solution has the same symmetries as the
exact Hamiltonian (e.g. rotationally invariant).



All symmetry operations can be
represented by similarity transformations.

A

gHy ' = H, (Vg € G).

[t's usually the case that the similarity transformations
are also (anti-)unrtary.

The electronic Hamiltonian is invariant to
unrtary spin transformations about the z-axis.
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U(6,n,) = €9

A

So that: 0i05= Fro—105: _ [y

For any real angle theta about the z-axis



VWe can write the most general Fock operator
in the spin-half manifold as
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We seek a unitary transformation such that
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In other words, find the constraints on the Fock matrix that satisfy the
above for any arbitrary unitary transformation.



We often claim UHF Is invariant to SZ

Let's show this (overlooking a few detalls).
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Which is true if and only if  F = ( 0 TFgy )

So this symmetry invariance leads to a decoupling
of the Fock operator into pure spin-up and spin-down manifolds



Any time we make the Fock operator invariant
to some symmetry, we add a constraint.

More constraints can only raise the energy
of a variationally optimized solution.

T we eliminate symmetry constraints related to spin and time reversal,
we get the Generalized Hartree-Fock solutions.

Solutions may be complex-valued and mixed spin.



Ve can get the lowest energy solution with GHF, but how can we
ensure the solution we got Is a true local minimum?



Electronic Hessian in Hartree-Fock (HF) theory

VWe want stable electronic solutions to the HF model.

Local minima guaranteed by
(a) First variation equal to zero.
(b) Second variation greater than or equal to zero.



In Hartree-Fock, we minimize the energy functional
El¢] = (¢|H|9)

VWe can parameterize this using

~

‘¢> — GTl |¢> (Thouless, 1960)

Where
= Ztg{agai} and Ty = —Tf



Our new functional, parameterized with respect to T

E = ($|Hn|d)c = (sle™ Hye o).

With our normal ordered®* Hamiltonian

I

Ay = A — (§lH|9) = Fx + Vn = fog{abag} + 7 (palirs) {afafasar}

*Normal ordering makes the final evaluation of matrix elements easier because we can use diagrammatic
tools to evaluate them. The results do not change if you use, e.g. Slater-Condon rules instead.



Expanding out the energy functional:
E = (0|Hy + TlTHN S bl TlTHNTl - §T1TT1THN + §HNT1T1 + -+ [0,
Take first variation with respect to t** and t§ about zero.
f ! X
6V E = (¢7|Hn|)e = (SIHNIS])e = fia = fai =0

This 1s Brillouin’s theorem.



Taking the second variation
0P E = (¢3|Hn|65) + (657 |HN|$) A (9| Hn |95+ (95 Hn | ),> 0

In matrix form, we have

B
(2 )
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This 1s the Hessian



Since all positive semi-definite matrices have positive (or zero)
eigenvalues, we can determine it our solution is locally stable by
diagonalizing the Hessian

T we run into negative eigenvalues, we pick the lowest one and its
associated eigenvector (J).

VWe take a step (s) In the direction of the eigenvector and re-optimize.
0 -—JT
e — s K Ful

J is steepest-descent eigenvector; C and C’ are old and new orbitals



o recap, Generalized Hartree-Fock eliminates the constraints that our
solutions must be Invariant to spin rotations and time reversals.

This means orbrtals can be complex and contain both spin-up and
spin-down components.

T a lower-energy, lower-symmetry solution to the IPM exists, GHF can
(In theory) find It.

We guarantee we are at a local minima by examining the eigenvalues
of our Hessian. If we aren’t, we have a defined method to move
towards a local minima.



One area where GHF routinely
obtains lower energies Is
seometrically frustrated systems

Condensed-matter physics: The eternal triangle

Mark Harris
Nature 456, 886-887(18 December 2008)



Symmetry Breaking in Hydrogen Rings.
| 3 rings, ranging
from 3 to |5 hydrogens

Fach ring has atoms
separated by one Angstrom
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Energy of Formation (a.u.)
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Difference between GHF and UHF energies by ring size

Energy (a.u.)
i
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Difference between GHF and UHF energies by ring size

Energy (a.u.)
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Condensed-matter physics: The eternal triangle

Mark Harris
Nature 456, 886-887(18 December 2008)
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GHF more stable by 0.9 kcal/mol



UHF GHF

(S.) = 0.00 (S.) = 0.00

(8%) = 1.06 S = 11056

S = 0.64 S = 0.64
n=4

Solutions have identical energy



UHF GHF

(S,) = 0.5 (S,) = 0.00

(8%) = 0.78 (8%) = 0.80

g = Ol S = 0.53
A=

GHF more stable by 3.3 kcal/mol



F

Spin density




UHF GHF

(S,) = 0.00
(8%) = 0.00

=G

Solutions have identical energy

(S,) = 0.00
(5%) = 0.00
S = 0.00



Huckel: 4n+2

Increasing
Inearity

weak magnetic ordering starts to show



Energy of Formation (a.u.)
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O-aromaticity in Hydrogen Rings?

Experimental mass
spectrum of PtZnHy"

260 261 262 263 264 265 266 267 268 269 270 271 272
PtZnH5-, A 0-Aromatic Cluster. Xinxing Zhang, Gaoxiang Liu, Gerd

Gantefor, Kit H. Bowen, and Anastassia N. Alexandrova
The Journal of Physical Chemistry Letters 2014 5 (9), 1596-160|




S =0.63
(S,) = 0.50

(54 = 1L

UHF GHF

A=

GHF more stable by 10.2 kcal/mol






GHF 1s (local) energetic minimum, but by no means unigue

A
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Infinitely-many degenerate solutions related by theta

E = ($0|H|$0) = (ple P HeS|¢) = (¢|H|o)



Broken-symmetry requires us to have zeros in our Hesslan

E = (0| H|¢p0) = (ple =% He?S|p) = (¢ H|¢)

(G|H|p) = (¢]e?>" HeS |g)
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All variations must be zero. First Is satistfied by Brillouin’s theorem,
second (our Hessian) will have at least one zero.

This Is a finite version of Goldstone’s theorem: If the system
spontaneously breaks a continuous symmetry, we get zero-energy
excitations along the mode of the symmetry.



Thank you to the Li group.



