Generalized Hartree Fock: Symmetry breaking and magnetic ordering Hartree-Fock seeks to minimize the energy of a single Slater Determinant (independent particle model, IPM)

 $E \leq \frac{\langle \phi | H | \phi \rangle}{\langle \phi | \phi \rangle}$

The equality holds when the wave function is variationally optimum.

The Fock operator is the exact electronic Hamiltonian in the IPM.

In general, we expect that our solution has the same symmetries as the exact Hamiltonian (e.g. rotationally invariant).

All symmetry operations can be represented by similarity transformations.

$$\hat{g}\hat{H}\hat{g}^{-1} = \hat{H}, \qquad (\forall \hat{g} \in \mathcal{G}).$$

It's usually the case that the similarity transformations are also (anti-)unitary.

The electronic Hamiltonian is invariant to unitary spin transformations about the z-axis.

$$\hat{U}(\theta, \mathbf{n}_z) = e^{i\theta \hat{S}_z}$$

So that: $e^{i\theta \hat{S}_z} \hat{H} e^{-i\theta \hat{S}_z} = \hat{H}$

For any real angle theta about the z-axis

We can write the most general Fock operator in the spin-half manifold as

$$\left(egin{array}{ccc} {f F}_{lpha lpha} & {f F}_{lpha eta} \ {f F}_{eta lpha} & {f F}_{eta eta} \end{array}
ight)
onumber \ \left(egin{array}{ccc} {f F}_{lpha lpha} & {f F}_{eta eta} \end{array}
ight)$$

We seek a unitary transformation such that

$$\hat{U} \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{F}_{\alpha\beta} \\ \mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix} \hat{U}^{-1} = \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{F}_{\alpha\beta} \\ \mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix}$$

In other words, find the constraints on the Fock matrix that satisfy the above for any arbitrary unitary transformation.

We often claim UHF is invariant to \hat{S}_z

Let's show this (overlooking a few details).

$$\hat{U} \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{F}_{\alpha\beta} \\ \mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix} \hat{U}^{-1} = \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{F}_{\alpha\beta} \\ \mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{F}_{\alpha\beta} \\ \mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & -\mathbf{F}_{\alpha\beta} \\ -\mathbf{F}_{\beta\alpha} & \mathbf{F}_{\beta\beta} \end{pmatrix}$$

$$\text{Which is true if and only if } \mathbf{F} = \begin{pmatrix} \mathbf{F}_{\alpha\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{\beta\beta} \end{pmatrix}$$

So this symmetry invariance leads to a decoupling of the Fock operator into pure spin-up and spin-down manifolds Any time we make the Fock operator invariant to some symmetry, we add a constraint.

More constraints can only raise the energy of a variationally optimized solution.

If we eliminate symmetry constraints related to spin and time reversal, we get the **Generalized Hartree-Fock** solutions.

Solutions may be complex-valued and mixed spin.

We can get the lowest energy solution with GHF, but how can we ensure the solution we got is a true local minimum?

Electronic Hessian in Hartree-Fock (HF) theory

We want **stable** electronic solutions to the HF model.

Local minima guaranteed by(a) First variation equal to zero.(b) Second variation greater than or equal to zero.

In Hartree-Fock, we **minimize** the energy functional

 $E[\phi] = \langle \phi | \hat{H} | \phi \rangle$

We can parameterize this using

$$ert ilde{\phi}
angle = e^{T_1} ert \phi
angle$$
 (Thouless, 1960)
Where $\hat{T}_1 = \sum_{ia} t^a_i \{a^\dagger_a a_i\}$ and $\hat{T}_1 = -\hat{T}_1^\dagger$

Our new functional, parameterized with respect to T

$$E = \langle \tilde{\phi} | \hat{H}_N | \tilde{\phi} \rangle_c = \langle \phi | e^{\hat{T}_1^{\dagger}} \hat{H}_N e^{\hat{T}_1} | \phi \rangle_c$$

With our normal ordered* Hamiltonian $\hat{H}_N = \hat{H} - \langle \phi | \hat{H} | \phi \rangle = \hat{F}_N + \hat{V}_N = f_{pq} \{ a_p^{\dagger} a_q \} + \frac{1}{4} \langle pq | | rs \rangle \{ a_p^{\dagger} a_q^{\dagger} a_s a_r \}$

*Normal ordering makes the final evaluation of matrix elements easier because we can use diagrammatic tools to evaluate them. The results do not change if you use, e.g. Slater-Condon rules instead.

Expanding out the energy functional: $E = \langle 0 | \hat{H}_N + \hat{T}_1^{\dagger} \hat{H}_N + \hat{H}_N \hat{T}_1 + \hat{T}_1^{\dagger} \hat{H}_N \hat{T}_1 + \frac{1}{2} \hat{T}_1^{\dagger} \hat{T}_1^{\dagger} \hat{H}_N + \frac{1}{2} \hat{H}_N \hat{T}_1 \hat{T}_1 + \dots | 0 \rangle_c$ Take **first variation** with respect to t_a^{i*} and t_i^a about zero. $\delta^{(1)} E = \langle \phi_i^a | \hat{H}_N | \phi \rangle_c = \langle \phi | \hat{H}_N | \phi_i^a \rangle_c = f_{ia} = f_{ai} = 0$

This is **Brillouin's theorem**.

Taking the second variation

 $\delta^{(2)}E = \langle \phi_i^a | \hat{H}_N | \phi_j^b \rangle_c + \langle \phi_{ij}^{ab} | \hat{H}_N | \phi \rangle_c + \langle \phi | \hat{H}_N | \phi_{ij}^{ab} \rangle_c + \langle \phi_j^b | \hat{H}_N | \phi_i^a \rangle_c \ge 0$

In matrix form, we have

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{pmatrix} \ge 0 A_{ia,jb} = (\epsilon_a - \epsilon_i) \delta_{ia,jb} + \langle aj || ib \rangle B_{ia,jb} = \langle ab || ij \rangle$$

This is the **Hessian**

Since all positive semi-definite matrices have positive (or zero) eigenvalues, we can determine if our solution is locally stable by diagonalizing the Hessian

If we run into negative eigenvalues, we pick the lowest one and its associated eigenvector (J).

We take a step (s) in the direction of the eigenvector and re-optimize.

$$\mathbf{C}' = e^{-s\mathbf{K}}\mathbf{C} \qquad \qquad \mathbf{K} = \begin{pmatrix} \mathbf{0} & -\mathbf{J}^{\dagger} \\ \mathbf{J} & \mathbf{0} \end{pmatrix}$$

J is steepest-descent eigenvector, C and C' are old and new orbitals

To recap, Generalized Hartree-Fock eliminates the constraints that our solutions must be invariant to spin rotations and time reversals.

This means orbitals can be **complex** and contain both **spin-up** and **spin-down** components.

If a lower-energy, lower-symmetry solution to the IPM exists, GHF can (in theory) find it.

We guarantee we are at a local minima by examining the eigenvalues of our Hessian. If we aren't, we have a defined method to move towards a local minima. One area where GHF routinely obtains lower energies is geometrically frustrated systems

Condensed-matter physics: The eternal triangle Mark Harris Nature 456, 886-887(18 December 2008)

Symmetry Breaking in Hydrogen Rings.

13 rings, ranging from 3 to 15 hydrogens

Each ring has atoms separated by one Angstrom

Energy of Formation vs Ring Size

Difference between GHF and UHF energies by ring size

Energy (a.u.)

Difference between GHF and UHF energies by ring size

Energy (a.u.)

Condensed-matter physics: The eternal triangle

Mark Harris Nature 456, 886-887(18 December 2008)

GHF more stable by 0.9 kcal/mol

Solutions have identical energy

GHF more stable by 3.3 kcal/mol

$$n = 6$$

Solutions have identical energy

Huckel: 4n+2

weak magnetic ordering starts to show

σ-aromaticity in Hydrogen Rings?

n = 15

GHF more stable by 10.2 kcal/mol

GHF

n = 15

GHF is (local) energetic minimum, but by no means unique

$$\begin{split} |\phi\theta\rangle &= e^{\theta\hat{S}}|\phi\rangle & e^{-\theta\hat{S}}\hat{H}e^{\theta\hat{S}} = \hat{H}\\ \hat{S} &= -\hat{S}^{\dagger} & |\phi\theta\rangle \neq |\phi\rangle \end{split}$$

Infinitely-many degenerate solutions related by theta

$$E = \langle \phi \theta | \hat{H} | \phi \theta \rangle = \langle \phi | e^{-\theta \hat{S}} \hat{H} e^{\theta \hat{S}} | \phi \rangle = \langle \phi | \hat{H} | \phi \rangle$$

Broken-symmetry requires us to have zeros in our Hessian

$$E = \langle \phi \theta | \hat{H} | \phi \theta \rangle = \langle \phi | e^{-\theta \hat{S}} \hat{H} e^{\theta \hat{S}} | \phi \rangle = \langle \phi | \hat{H} | \phi \rangle$$

$$\begin{aligned} \langle \phi | \hat{H} | \phi \rangle &= \langle \phi | e^{\theta \hat{S}^{\dagger}} \hat{H} e^{\theta \hat{S}} | \phi \rangle \\ &= \langle \phi | \hat{H} | \phi \rangle + \left| \frac{\partial E}{\partial \mathbf{s}} \right|_{\mathbf{s}=0} \mathbf{s} + \frac{1}{2} \frac{\partial^2 E}{\partial \mathbf{s} \partial \mathbf{s}} \right|_{\mathbf{s}=0} \mathbf{s}^2 + \cdots \end{aligned}$$

All variations must be zero. First is satisfied by Brillouin's theorem, second (our Hessian) will have at least one zero.

This is a finite version of Goldstone's theorem: if the system spontaneously breaks a continuous symmetry, we get zero-energy excitations along the mode of the symmetry.

Thank you to the Li group.