
Generalized Hartree Fock:	

Symmetry breaking and magnetic ordering



Hartree-Fock seeks to minimize the energy of a 	

single Slater Determinant (independent particle model, IPM)

E  h�|H|�i
h�|�i

The equality holds when the wave function is variationally optimum.

The Fock operator is the exact electronic Hamiltonian in the IPM.	

!

In general, we expect that our solution has the same symmetries as the 
exact Hamiltonian (e.g. rotationally invariant).



All symmetry operations can be 	

represented by similarity transformations.

ĝĤĝ�1 = Ĥ, (8ĝ 2 G).

It’s usually the case that the similarity transformations 	

are also (anti-)unitary.

The electronic Hamiltonian is invariant to 	

unitary spin transformations about the z-axis.

Û(✓,nz) = ei✓Ŝz

So that: ei✓ŜzĤe�i✓Ŝz = Ĥ

For any real angle theta about the z-axis



We can write the most general Fock operator 	

in the spin-half manifold as
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We seek a unitary transformation such that 

In other words, find the constraints on the Fock matrix that satisfy the 
above for any arbitrary unitary transformation.



We often claim UHF is invariant to Ŝz

Let’s show this (overlooking a few details).
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Which is true if and only if

So this symmetry invariance leads to a decoupling 	

of the Fock operator into pure spin-up and spin-down manifolds



Any time we make the Fock operator invariant 	

to some symmetry, we add a constraint.

More constraints can only raise the energy 	

of a variationally optimized solution.

If we eliminate symmetry constraints related to spin and time reversal, 
we get the Generalized Hartree-Fock solutions.

Solutions may be complex-valued and mixed spin.



We can get the lowest energy solution with GHF, but how can we 
ensure the solution we got is a true local minimum?



Electronic Hessian in Hartree-Fock (HF) theory

We want stable electronic solutions to the HF model.	

!
!

Local minima guaranteed by 	

(a) First variation equal to zero.	

(b) Second variation greater than or equal to zero.



In Hartree-Fock, we minimize the energy functional 

E[�] = h�|Ĥ|�i

We can parameterize this using

|�̃i = eT̂1 |�i (Thouless, 1960)

Where
T̂1 =

X

ia
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1and
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†
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Our new functional, parameterized with respect to T

ĤN = Ĥ � h�|Ĥ|�i = F̂N + V̂N = fpq{a†paq}+
1

4
hpq||rsi{a†pa†qasar}

With our normal ordered* Hamiltonian

*Normal ordering makes the final evaluation of matrix elements easier because we can use diagrammatic 
tools to evaluate them. The results do not change if you use, e.g. Slater-Condon rules instead.
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Expanding out the energy functional:

Take first variation with respect to         and        about zero.  ti⇤a tai

This is Brillouin’s theorem.



Taking the second variation

In matrix form, we have
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This is the Hessian
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i |ĤN |�ic = h�|ĤN |�a
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Since all positive semi-definite matrices have positive (or zero) 
eigenvalues, we can determine if our solution is locally stable by 

diagonalizing the Hessian

If we run into negative eigenvalues, we pick the lowest one and its 
associated eigenvector (J).	


!
We take a step (s) in the direction of the eigenvector and re-optimize.

K =
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C0 = e�sKC

J is steepest-descent eigenvector,  C and C’ are old and new orbitals



To recap, Generalized Hartree-Fock eliminates the constraints that our 
solutions must be invariant to spin rotations and time reversals.	


!
This means orbitals can be complex and contain both spin-up  and 

spin-down components.	

!

If a lower-energy, lower-symmetry solution to the IPM exists, GHF can 
(in theory) find it. 	


!
We guarantee we are at a local minima by examining the eigenvalues 

of our Hessian. If we aren’t, we have a defined method to move 
towards a local minima.



One area where GHF routinely 
obtains lower energies is 

geometrically frustrated systems

Condensed-matter physics:  The eternal triangle 
Mark Harris	


Nature 456, 886-887(18 December 2008)



Symmetry Breaking in Hydrogen Rings.

13 rings, ranging 	

from 3 to 15 hydrogens

Each ring has atoms 	

separated by one Angstrom
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n = 3

UHF GHF

GHF more stable by 0.9 kcal/mol

hSzi = 0.5 hSzi = 0.0

hS2i = 0.78hS2i = 0.77
S = 0.51S = 0.51



UHF GHF

n = 4
Solutions have identical energy

S = 0.64 S = 0.64

hSzi = 0.00 hSzi = 0.00

hS2i = 1.06 hS2i = 1.06



UHF GHF

n = 5

GHF more stable by 3.3 kcal/mol

hSzi = 0.5

S = 0.51 S = 0.53

hS2i = 0.78 hS2i = 0.80

hSzi = 0.00



UHF GHFSpin density



UHF GHF

n = 6

Solutions have identical energy

S = 0.00

hS2i = 0.00

hSzi = 0.00

S = 0.00

hS2i = 0.00

hSzi = 0.00



UHF GHF

n = 6

n = 10

n = 14

Increasing 	

linearity

weak magnetic ordering starts to show

Huckel: 4n+2
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σ-aromaticity in Hydrogen Rings?

PtZnH5–, A σ-Aromatic Cluster. Xinxing Zhang, Gaoxiang Liu, Gerd 
Ganteför, Kit H. Bowen, and Anastassia N. Alexandrova	


The Journal of Physical Chemistry Letters 2014 5 (9), 1596-1601



GHF more stable by 10.2 kcal/mol

UHF GHF

n = 15

S = 0.74

hSzi = 0.00

hS2i = 1.29

S = 0.63

hSzi = 0.50

hS2i = 1.01



UHF GHF

n = 15



GHF is (local) energetic minimum, but by no means unique
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Infinitely-many degenerate solutions related by theta



Broken-symmetry requires us to have zeros in our Hessian
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All variations must be zero. First is satisfied by Brillouin’s theorem, 
second (our Hessian) will have at least one zero.

This is a finite version of Goldstone’s theorem: if the system 
spontaneously breaks a continuous symmetry, we get zero-energy 

excitations along the mode of the symmetry.



Thank you to the Li group.


