Generalized Hartree Fock for Excited States

Joshua Goings, Feizhi Ding, Ernest Davidson, Xiaosong Li*

W UNIVERSITY of WASHINGTON

Take a three site lattice

Add two electrons. (Assume anti-ferromagnetism favored).

Now, add the third electron. No spin orientation simultaneously favors all anti-ferromagnetic exchange interactions

Most electronic structure methods cannot capture non-collinearity!

Generating non-collinear magnetism by spin frustration with transition metals

Generating non-collinear magnetism by spin frustration with transition metals

Lock metal trimer into D_{3h}

We would like to describe such systems with single reference methods.

Furthermore, we want to study how the systems can be manipulated with electromagnetic fields.

Generalized Hartree Fock (GHF)

$$\phi_{GHF} = \phi_{\alpha} + \phi_{\beta}$$

$$\begin{pmatrix} \mathbf{F}^{\alpha\alpha} & \mathbf{F}^{\alpha\beta} \\ \mathbf{F}^{\beta\alpha} & \mathbf{F}^{\beta\beta} \end{pmatrix} \begin{pmatrix} \mathbf{C}^{\alpha} \\ \mathbf{C}^{\beta} \end{pmatrix} = \epsilon \begin{pmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{C}^{\alpha} \\ \mathbf{C}^{\beta} \end{pmatrix}$$

$$\mathbf{F}^{\sigma\tau} = \mathbf{h}^{\sigma\tau} + \delta_{\sigma\tau} \left[\mathbf{J}^{\alpha\alpha} + \mathbf{J}^{\beta\beta} \right] - \mathbf{K}^{\sigma\tau}$$

GHF is equivalent to a two-component spinor. For spin frustrated systems, it gives a distinctly lower energy.

$$\phi_{GHF} = \phi_{\alpha} + \phi_{\beta}$$

$\Delta E = 7.5 \text{ kcal mol}^{-1}$

GHF outperforms UHF for energetics.

It is not, however, an eigenfunction of total spin or axial spin projection.

It is **uncertain if GHF is useful** for **excited state** and **property** calculations.

Briefly explored in 2000, properties not studied, restricted to real GHF.

Yamaki, et al. "MP2, Tamm-Dancoff, and RPA Based on the Generalized HF Solution". IJQC 80 (2000) 701

Inserting the GHF orbitals into the CIS equations gives wildly different excitation energies and transition moments.

Cr₃ UCIS Cr₃ GCIS 0.8 **Oscillator Strength** 0.6 0.4 0.2 0.5 2 3 3.5 1.5 2.5 4 Energy / eV

LR-TD-GHF gives the same story.

To determine which is more useful for excited states, ideally we'd perform multi-reference calculations.

This is not currently feasible for Cr₃.

Toy model: H₃, minimal basis (STO-3G), 1 Angstrom.

The simplest model of non-collinear magnetism.

Degenerate ground state

Full Configuration Interaction (FCI) captures this

D_{3h}

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ 2a_1(\beta) & 1b_2(\alpha) \end{array}$ GHF orbital diagram (approximate) $\begin{array}{c}
\bullet & \bullet \\
\bullet & \bullet \\
2a_1(\alpha) & 1b_2(\beta)
\end{array}$ $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ 2a_1(\beta) & 1b_2(\alpha) \end{array}$, O + i O2a₁(α) + i O 1b₂(β) $1a_1(\alpha)$ $1a_1(\beta)$,

Four 'almost' e' orbitals. Should be degenerate, but aren't.

Why UCIS fails: example from FCI 1A₁' state.

Single Ex from UHF A₁ Double Ex from UHF B₂

Single Ex from UHF B₂ Double Ex from UHF A₁

FCI state cannot be formed from single reference!

Consider a singly excited determinant out of GHF reference

$$|\phi_{6}\phi_{2}\phi_{3}\rangle = -\frac{1}{2}|1a_{1}(\alpha)(2a_{1}(\beta) + ib_{2}(\alpha))(2a_{1}(\alpha) + ib_{2}(\beta))\rangle$$

(M_s = 1/2) Two configs for FCI A₁

Consider a singly excited determinant out of GHF reference

$$|\phi_{6}\phi_{2}\phi_{3}\rangle = -\frac{1}{2}|1a_{1}(\alpha)(2a_{1}(\beta) + ib_{2}(\alpha))(2a_{1}(\alpha) + ib_{2}(\beta))\rangle$$

UHF won't let you mix the things you need.

GHF gives you more flexibility, but you better hope for some fortuitous cancellation.

Projecting out the higher spin determinants is probably the best next step.

Jiménez-Hoyos, Carlos A., et al. "Projected Hartree-Fock theory." JCP 136 (2012) 164109.

Thank you

Support gratefully acknowledged from NSF Graduate Research Fellowship Program

WUNIVERSITY of WASHINGTON

A far simpler case: BH molecule

BH, FCI/4-31G, 1.21Å			
ω (eV)	Osc. Str.	$\langle S^2 \rangle$	
-25.1406986706		0.00	
0.9600	0.0000	6.00	
0.9600	0.0000	6.00	
3.1671	0.0260	0.00	
3.1671	0.0260	0.00	

BH, UCIS/4-31G, 1.21Å			
ω (eV)	Osc. Str.	$\langle S^2 \rangle$	
-25.0843428674		0.49	
1.2910	0.0000	1.72	
2.7892	0.0087	1.03	
3.1739	0.0261	0.04	
3.2511	0.0426	0.31	

BH, GCIS/4-31G, 1.21Å			
$\omega ({\rm eV})$	Osc. Str.	$\langle S^2 \rangle$	
-25.0849051758		0.55	
0.4491	0.0000		
0.7958	0.0000		
0.7958	0.0000		
1.3683	0.0000		
1.3683	0.0000		
2.7650	0.0090		
3.2393	0.0330		
3.2393	0.0330		

GHF no restriction on M_s, so 6 appx. ³∏ states

GHF maintains degeneracy of ¹Π, compared to UCIS

AVERAGE FCI STO-3G, C_{2v}			
Sym	ω (eV) / Osc. Str.	$\langle S^2 \rangle$	
$A_1 + B_2$	-1.36438908 au	0.750	
B_2	$10.6389 \ / \ 0.0000$	3.750	
$A_1 + B_2$	$19.0087 \ / \ 0.1835$	0.750	
B_2	$22.4005 \ / \ 0.5407$	0.750	
A_1	$22.8193 \ / \ 0.1446$	0.750	
$A_1 + B_2$	$37.5085 \ / \ 0.0187$?	

-			
	AVERAGE 'Full' UCIS STO-3G, C_{2v}		
-	Sym	ω (eV) / Osc. Str.	$\langle S^2 \rangle$
-	$A_1 + B_2$	-1.33320792 au	0.794
-		-0.2936 / 0.0000	
		$0.3740 \ / \ 0.0000$	
	$A_1 + B_2$	1.4073 / 0.005	0.850
		9.7596 / 0.0000	
	B_2	13.2603 / 0.0265	2.530
		16.4140 / 0.0000	
		20.1775 / 0.0000	
	A_1	20.4396 / 0.3730	0.750
-	B_2	21.2675 / 0.9677	0.917

GCIS STO-3G		
Sym	ω (eV) / Osc. Str.	$\langle S^2 \rangle$
?	-1.34044035 au	0.841
?	0.4667 / 0.0010	?
?	$0.4667 \ / \ 0.0010$?
?	$1.5260 \ / \ 0.0000$?
?	$15.0002 \ / \ 0.0000$?
?	$15.0459 \ / \ 0.0000$?
?	$15.7552 \ / \ 0.0418$?
?	$15.7552 \ / \ 0.0418$?
?	21.5224 / 0.5891	?
?	$21.5224 \ / \ 0.5891$?

'Full' UCIS STO-3G, C_{2v} , B_2		
Sym	ω (eV) / Osc. Str.	$\langle S^2 \rangle$
B_2	-1.33598845 au	0.838
	-0.3977 / 0.0000	
	$0.7480 \ / \ 0.0000$	
A_1	$2.2707 \ / \ 0.0077$	0.750
	9.8660 / 0.0000	
B_2	13.4817 / 0.0240	2.531
	16.7002 / 0.0000	
	20.2434 / 0.0000	
A_1	20.7676 / 0.3832	0.750
B_2	21.4012 / 0.8952	0.793

'Full' UCIS STO-3G, C_{2v} , A_1		
Sym	ω (eV) / Osc. Str.	$\langle S^2 \rangle$
A_1	-1.32816998 au	0.750
	-0.1895 / 0.0000	
	0.0000 / 0.0000	
B_2	$0.5438 \ / \ 0.0023$	0.949
	$9.6532 \ / \ 0.0000$	
B_2	$13.0389 \ / \ 0.0289$	2.528
	16.1277 / 0.0000	
	20.1116 / 0.0000	
A_1	20.1116 / 0.3627	0.750
B_2	21.1337 / 1.0401	0.773

