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Our big focus Is using computers to
poredict properties of nanomaterials,
e.g. quantum dots

UW Li Research Group
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Quantum Confinement
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Photovoltaics and Spintronics
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Diluted Magnetic Semiconductors (DMS)
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These magnetic dopants interact strongly
with certain other dopants that may lead to

New superconductors

High-temp ferromagnets

Incredibly small hard drives

Super-fast processors




The problem is no one really knows how this works.

| use quantum chemistry to simulate these materials on
supercomputing clusters



Hartree-Fock Is a computational method
for studying electrons in molecules

Instead of studying many electrons at once,
we look at each electron individually moving
in the field of the other electrons.



“Molecule”

® clectron




“Molecule”

T smeared’
electron cloud

® clectron




The function that describes how the electron moves in the
"mean field” of the other electrons is its orbital.

Hartree Fock theory is the basis of
Molecular Orbital theory!

H (AO) H, (MOs) H (AO)



Less formally, Hartree Fock is the Google Maps of chemistry
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All the cars are smeared out into “traffic density”

All the electrons are smeared out into “electron density”



But what sort of interactions should we consider?



Quantum chemists try to solve
\
N\

H the Hamiltonian describes
INnteractions between electrons

\Ij the wavefunction describes the molecule

E IS the energy of the system

This is the Schrodinger Equation
(and is in general impossible to solve)



For molecules, the Hamiltonian describes five interactions

N\

H = electron kinetic energy

N electron

‘ nucleus




For molecules, the Hamiltonian describes five interactions

N\

H = electron kinetic energy + nuclel kinetic energy

electron

‘ nucleus




For molecules, the Hamiltonian describes five interactions

N\

H = electron kinetic energy + nuclel kinetic energy
+ nuclear-repulsion

electron

‘ nucleus
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For molecules, the Hamiltonian describes five interactions

N\

H = electron kinetic energy + nuclel kinetic energy
+ nuclear-repulsion + electron-nuclear attraction

/ electron
‘ AX ‘ nucleus




For molecules, the Hamiltonian describes five interactions

N\

H = electron kinetic energy + nuclel kinetic energy
+ nuclear-repulsion + electron-nuclear attraction
+ electron-electron repulsion

\ electron
‘ nucleus




What’s missing?
Spin doesn’t show up in our Hamiltonian.

However, we need spin to describe magnetism.

The origin of spin is actually really weird.

electron

‘ nucleus




It we want to include spin, we actually have
to think about how our equations change as
we approach the speed of light.




Einstein says our equations shouldn't change when we
approach the speed of light

Chemistry shouldn’t change whether
we do it here or at 290,000,000 m/s




Mathematically, if require chemistry to be the
same regardless of how fast we are moving...

Spin shows up in our Hamiltonian
Interactions between spins show up

We get the proper description for
magnetism in molecules.

Actually doing this, however, Is a very hard problem.



There are many types of spin interactions
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A table from the back of
“Theoretical Foundations of
Electron Spin Resonance”

(John Harriman)

These are just some of the
spin interactions we might
consider

TABLE F-I (continued)

Terms depending on spin but not field

(Electron spin)

24 Spin-orbit interaction

2 Spin-other-orbit interaction

28 Electron-electron spin-orbit interaction
24 Spin-spin dipolar interaction
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All magnetic materials have unpaired electrons.

How the spins order determines the type of magnet (at OK).

Ferromagnetic T T T T T T T T
Antiferromagnetic T l T l T l T l

Ferrimagnetic Pyt vVt



All these states are collinear.

Spins point either up or down.

Ferromagnetic T T T T T T T T
Antiferromagnetic T l T l T l T l

Ferrimagnetic Pyt vVt



Heating up a magnet past its critical temperature
gives us a disordered state

Paramagnetic —\//\\V

s it possible to obtain a disordered state at absolute zero?



Spin frustration leads to non-collinear magnetism

Take a three site lattice



Spin frustration leads to non-collinear magnetism

Add two electrons.
(Assume anti-ferromagnetism favored).



Spin frustration leads to non-collinear magnetism

Now, add the third electron.
No spin orientation simultaneously favors
all anti-ferromagnetic exchange interactions



Spin frustration leads to non-collinear magnetism
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Collinear Non-collinear

Most electronic structure methods
cannot capture non-collinearity!



Generating non-collinear magnetism
by spin frustration with transition metals

Ag(111)
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S Lounis. “Non-collinear magnetism induced by frustration in transition-metal m

nanostructures deposited on surfaces”. JPCM 26 (2014) 273201.




Generating non-collinear magnetism
by spin frustration with transition metals

Lock metal trimer into triangle



n=3
n=4
n=>5
n=06
n=7
n=23
n=9
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hese molecules are great for testing out ideas about
magnetism because they have many
competing magnetic interactions

This understanding helps us understand more complicated
Interactions in quantum dots.
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ADb initio non-relativistic spin dynamics
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Applying a magnetic field (into page)
causes spins to precess
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Here we tried to model spin waves.

tett i@t ititity

l flip magnetic moment

tetit i@t ittty

...and watch it go!



(movie)



Initial Spin-Flipped State
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t ~20fs
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t ~40fs




t ~ 060 fs



All these tools give us complementary information to interpret
and explain what we see in the chemistry lab.

May, Joseph W., Ryan J. McMorris, and Xiaosong Li. "Ferromagnetism in p-Type Manganese-Doped Zinc Oxide
Quantum Dots." The Journal of Physical Chemistry Letters 3.10 (2012): 1374-1380.
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Theoretical Characterization of Conduction-Band Electrons in
Photodoped and Aluminum-Doped Zinc Oxide (AZO) Quantum Dots

Joshua J. Goings, Alina M. Schimpf, Joseph W. May, Robert W. Johns, Daniel R. Gamelin,*
and Xiaosong Li*
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Give the quantum dots an extra electron by doping with aluminum...



HOMO (s)

Quantum dot gets ‘atomic’ orbitals (“Super-orbitals”)
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The “extra” electron carries a spin.
It should interact with magnetic centers.

We think it may make a good room-temperature magnet
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The “extra” electron carries a spin.
It should interact with magnetic centers.

We think it may make a good room-temperature magnet

Part of the fun Is seeing if it will!







