Atomic-orbital based real-time TDDFT for circular dichroism spectroscopy

Joshua Goings and Xiaosong Li Wednesday, March 16, 4:05pm

Natural circular dichroism

Differential absorption of circularly polarized light by chiral molecules

Source: NASA (<u>http://www.nai.arc.nasa.gov/</u>)

Thalidomide tragedy

Source: Otis Historical Archives National Museum of Health and Medicine

Iridescence of the scarab beetle

Left CP

Sharma, Vivek, et al. "Structural origin of circularly polarized iridescence in jeweled beetles." Science 325.5939 (2009): 449-451.

In CD spectroscopy, we usually care about rotary strength

 $R(n \leftarrow 0) = \operatorname{Im}\langle 0|\boldsymbol{\mu}|n\rangle\langle n|\boldsymbol{m}|0\rangle$

Which characterizes the intensity of an isotropic CD transition

- $oldsymbol{\mu}$ electric dipole
- *m* magnetic dipole

$R(n \leftarrow 0) = \operatorname{Im}\langle 0|\boldsymbol{\mu}|n\rangle\langle n|\boldsymbol{m}|0\rangle$

µ electric dipole m magnetic dipole
Chiral molecules can support an oscillating current density, which arises as a result of a perturbing electric field

It's important to note that

$$R(n \leftarrow 0) = \operatorname{Im}\langle 0|\boldsymbol{\mu}|n\rangle\langle n|\boldsymbol{m}|0\rangle$$

Only holds for isotropic (non-oriented) systems

For oriented systems, (especially in X-ray CD spectroscopy) we must also include the induced electric dipole — electric quadrupole Getting good (experimentally meaningful) CD spectra is not a trivial task

CD spectra can take positive and negative values

CD very sensitive to geometry, functional / wave function, and basis

Vibronic effects (and VCD) further complicate interpretation of spectra

Linear response:

TDDFT: Furche, 2001; Autschbach, *et al.* 2002; Stephens, *et al.* 2002; Diedrich and Grimme 2003; Caricato, 2014, 2015; *many more!*

CC: Crawford, 2006;

Great if you want to study a specific transition, gets expensive if you want the full band spectrum

Since we are often interested in CD bands, real-time (RT) propagation is advantageous

Current RT-ECD methods are grid-based

Yabana and Bertsch, 1999;

Varsano, Daniele, et al., 2009;

We have implemented an atomic-orbital based real-time method for computing the ECD band spectrum

Pros:

No pseudopotential Variational ground state Can easily extend to X-ray regime No nuclear origin dependence

Cons:

Not nearly as parallel as grid-based Still have gauge-origin dependencies Working in the dipole length gauge leads to gauge-origin dependencies.

RT-TDDFT and LR-TDDFT share this problem.

Despite this, Diedrich and Grimme (2003) recommend length gauge due to robustness.

Ideally, we'd use London orbitals (GIAOs).

In RT-TDDFT we compute rotary strength $R(\omega) = \frac{\omega}{\pi c} \text{Im} \left[\text{Tr} \left(\boldsymbol{\beta}(\omega) \right) \right]$

With a delta field, e.g. $E(t) = \delta(t)\kappa$

$$\beta_{\alpha\alpha}(\omega) = \frac{ic}{\omega\kappa_{\alpha}} m_{\alpha}(\omega)$$

Measure how much the magnetic dipole changes as a function of perturbing electric dipole

To propagate, start with Kohn-Sham matrix

$$\mathbf{K} = \mathbf{h} + \mathbf{G}_{xe}[\mathbf{P}] + \alpha \cdot \mathbf{V}_{xc}[\mathbf{P}]$$

Time evolution (in orthonormal basis) governed by

$$i\frac{\partial \mathbf{P'}}{\partial t} = [\mathbf{K'}, \mathbf{P'}]$$

Modified Midpoint Unitary Update (MMUT)

$$\mathbf{C}^{\dagger}(t_n) \cdot \mathbf{K}(t_n) \cdot \mathbf{C}(t_n) = \boldsymbol{\epsilon}(t_n)$$
$$\mathbf{U}(t_n) = \exp\left[-i \cdot 2\Delta t \cdot \mathbf{K}(t_n)\right]$$
$$= \mathbf{C}(t_n) \cdot \exp\left[-i \cdot 2\Delta t \cdot \boldsymbol{\epsilon}(t_n)\right] \cdot \mathbf{C}^{\dagger}(t_n)$$

This allows for us to propagate density

$$\mathbf{P}(t_{n+1}) = \mathbf{U}(t_n) \cdot \mathbf{P}(t_{n-1}) \cdot \mathbf{U}^{\dagger}(t_n)$$

Example: RT-ECD with alpha-1,3-(R,R)-pinene

Fourier transforming TD magnetic dipole, substitute components

$$R(\omega) = \frac{i}{\pi} \operatorname{Im} \left[\operatorname{Tr} \left(\frac{m_{\alpha} (\omega)}{\kappa_{\alpha}} \right) \right]$$
$$= \frac{1}{\pi} \operatorname{Re} \left[\operatorname{Tr} \left(\frac{m_{\alpha} (\omega)}{\kappa_{\alpha}} \right) \right]$$

To give each peak a finite width, we artificially damp by an exponential

$$\boldsymbol{m}'(t) = \boldsymbol{m}(t)e^{-t/a}$$

This effectively "dresses" each peak as a Lorentzian

We damp to give a FWHM of 0.05 eV

With a weak delta field, we can recover LR-TDDFT

With a weak delta field, we can recover LR-TDDFT

$B3LYP/6-31+G^*$

Compare to first 100 LR-TDDFT states

Resolution limited by propagation time

Here, at least 100 fs, 0.012 fs time step

Since we have the full ECD spectrum, integrating over should give the sum rules of Condon (1937)

$$\sum_{n \neq 0} R(n \leftarrow 0) = \sum_{n \neq 0} \operatorname{Im} \left(\langle 0 | \boldsymbol{\mu} | n \rangle \langle n | \boldsymbol{m} | 0 \rangle \right) = 0$$

We expect In practice, we find sums
$$\int_0^\infty d\omega R(\omega) = 0 \qquad 0.00001 < \int_0^\infty d\omega R(\omega) < 1.0$$

Signals inadequate basis set and numerical noise pinene: TZVP two orders of magnitude less than 6-31+G*

AO-based Real Time TDSCF in ChronusQ

https://github.com/liresearchgroup/chronusq_public

Real Time TDSCF

1.Free & open source!2.RHF, UHF, GHF, complex3.Various types of fields4.C++/Python

DFT and ECD, soon to be released on public branch!

Thank you!

$R(n \leftarrow 0) = \mathrm{Im}\langle 0 | \boldsymbol{\mu} | n \rangle \langle n | \boldsymbol{m} | 0 \rangle$

$$R(\omega) = \frac{\omega}{\pi c} \operatorname{Im} \left[\operatorname{Tr} \left(\boldsymbol{\beta}(\omega) \right) \right]$$

$$\beta_{\alpha\alpha}(\omega) = \frac{ic}{\omega\kappa_{\alpha}} m_{\alpha}(\omega)$$

$$R(\omega) = \frac{i}{\pi} \operatorname{Im} \left[\operatorname{Tr} \left(\frac{m_{\alpha} \left(\omega \right)}{\kappa_{\alpha}} \right) \right]$$
$$= \frac{1}{\pi} \operatorname{Re} \left[\operatorname{Tr} \left(\frac{m_{\alpha} \left(\omega \right)}{\kappa_{\alpha}} \right) \right]$$

$$R(\omega) = \frac{1}{\pi} \operatorname{Re} \left[\operatorname{Tr} \left(\frac{m_{\alpha} \left(\omega \right)}{\kappa_{\alpha}} \right) \right]$$

$$\mathbf{K} = \mathbf{h} + \mathbf{G}_{xe}[\mathbf{P}] + \alpha \cdot \mathbf{V}_{xc}[\mathbf{P}]$$

$$i\frac{\partial \mathbf{P}'}{\partial t} = [\mathbf{K}', \mathbf{P}']$$

$$\mathbf{C}^{\dagger}(t_n) \cdot \mathbf{K}(t_n) \cdot \mathbf{C}(t_n) = \boldsymbol{\epsilon}(t_n)$$
$$\mathbf{U}(t_n) = \exp\left[-i \cdot 2\Delta t \cdot \mathbf{K}(t_n)\right]$$
$$= \mathbf{C}(t_n) \cdot \exp\left[-i \cdot 2\Delta t \cdot \boldsymbol{\epsilon}(t_n)\right] \cdot \mathbf{C}^{\dagger}(t_n)$$

$$\mathbf{P}(t_{n+1}) = \mathbf{U}(t_n) \cdot \mathbf{P}(t_{n-1}) \cdot \mathbf{U}^{\dagger}(t_n)$$