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Motivation

Einsle, O. Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J Biol Inorg Chem 19, 737–745 (2014).

Richard Layfield, https://phys.org/news/2018-10-scientists-high-temperature-single-molecule-magnet.html

Solid State, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

• Complex catalysis with multiple metal centers, e.g. FeMoCo in nitrogenase

• Single molecule magnets and magnetic materials 

• Materials for photovoltaics and high-  superconductivityTc

Many molecules and materials with complex electronic structures and 
unique and useful catalytic and electromagnetic properties

Electronic structure is strongly correlated — conventional methods fail

https://phys.org/news/2018-10-scientists-high-temperature-single-molecule-magnet.html


• Electron correlation: measure of how behavior of one electron is 
influenced by behavior of other electrons

• Electron correlation energy: difference in energy between Hartree-Fock 
and exact ground state energy

• Electron correlation is divided into dynamical and non-dynamical (static)

• dynamical correlation: correlation of movement of electrons
• static correlation: need more than one Slater determinant (i.e., 

Hartree-Fock is qualitatively incorrect)

Electron correlation

P(AB) = P(A)P(B) P(AB) ≠ P(A)P(B)

Uncorrelated (independent) Correlated

Electron correlation often leads to interesting / useful chemistry.

Strong correlation: lots of Slater determinants required to get 
qualitatively correct electronic structure



• Total wave function is linear combination of determinants 


• Reference (Hartree-Fock) 


• Single substitutions / excitations 


• Double substitutions / excitations 

|Ψ⟩ = ∑ Ck |Φk⟩

|0⟩ = |ϕ1ϕ2…ϕN⟩
|Si→a⟩ = |ϕ1…ϕi−1ϕaϕi+1…ϕN⟩
|Dij→ab⟩ = |ϕ1…ϕi−1ϕa…ϕj−1ϕb…ϕN⟩

Correlated methods: Multiple determinants



• Total wave function is linear combination of Slater determinants 


• Determinants can be classified by excitation level


•  is no excitations, 


•  is all single excitations, 


•  is all doubles, 


•  all triples… and so on.


• Determine coefficients  variationally


• Full CI: all possible substitutions. 

• Exact for a given atomic orbital basis set


• Very expensive, scales as  (N orbitals choose k electrons)

|0⟩
|S⟩
|D⟩
|T⟩

Ci

|0⟩, |S⟩, |D⟩, |T⟩, …

N!

Configuration interaction (CI)

|ΨCI⟩ = |0⟩ + ∑
S

CS |S⟩ + ∑
D

CD |D⟩ + ⋯ Ĥ |ΨCI⟩ = E |ΨCI⟩



• Total wave function:

Configuration interaction (CI): Matrix form
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|S⟩ |D⟩ |T⟩

EHF

⟨X | Ĥ |Y⟩

Hamiltonian with 
matrix elements

CI is one big eigenproblem,

lowest eigenvalue is  

ground state energy

|ΨCI⟩ = |0⟩ + ∑
S

CS |S⟩ + ∑
D

CD |D⟩ + ⋯

Ĥ |ΨCI⟩ = E |ΨCI⟩
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⟨T | Ĥ |D⟩ ⟨T | Ĥ |T⟩

⟨D | Ĥ |0⟩



Truncated configuration interaction
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Limit Hamiltonian matrix to 
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Keep  submatrix |0⟩, |S⟩, |D⟩

Minimum eigenvalue is an 
upper bound on the “true” 
minimum

Truncated configuration interaction
Truncated CI: Limit Hamiltonian 
matrix to certain excitation 
“classes”
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e.g. CISD 

(CI with Singles and Doubles)

Keep  submatrix |0⟩, |S⟩, |D⟩

Minimum eigenvalue is an 
upper bound on the “true” 
minimum

Truncated CI is still very large 
and often inadequate for 
interesting molecules

Truncated configuration interaction



Selected CI methods (sCI)
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• Full CI matrix is very sparse


• ~95% of matrix elements do 
not contribute significantly to 
the total energy


• “Configurational deadwood”


• sCI methods truncate at 
individual determinant level
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Can we do better than 
truncated CI?

What are the best 
determinants to keep? 

Not obvious a priori
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1 2 1
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sCI: A trivial example

pretend CI matrix

(note: symmetric)



λmin = 2 − 3 ≈ 0.268
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1 1 0

1 2 1

0 1 3

λmin ≈ 0.268

sCI: A trivial example

Goal: Choose a 2  2 submatrix with that best approximates × λ′￼min λmin
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1 2 1

0 1 3
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λmin ≈ 0.268 λ′￼min ≈ 1.382

s = {1,2}

index 1 and 2

Goal: Choose a 2  2 submatrix with that best approximates × λ′￼min λmin

sCI: A trivial example



1 1 0

1 2 1

0 1 3

1 0
0 3

λmin ≈ 0.268 λ′￼min = 1

s = {0,2}

index 0 and 2

Goal: Choose a 2  2 submatrix with that best approximates × λ′￼min λmin

sCI: A trivial example



1 1 0

1 2 1

0 1 3

1 1
1 2

λmin ≈ 0.268 λ′￼min ≈ 0.382

s = {0,1}

index 0 and 1

Goal: Choose a 2  2 submatrix with that best approximates × λ′￼min λmin

sCI: A trivial example



s = {0,1} → (1 1
1 2), λmin = ≈ 0.382

s = {0,2} → (1 0
0 3), λmin = 1

s = {1,2} → (2 1
1 3), λmin ≈ 1.382

1 1 0

1 2 1

0 1 3

λmin ≈ 0.268

• Approximate minimum eigenvalue upper 
bounds “true” minimum eigenvalue


• Variational theorem


• 

• Matrix must be symmetric

λ′￼min ≥ λmin

• Challenge is finding the optimal 
submatrix


• For  submatrix of  
matrix, there are  choose  
combinations

k × k N × N
N k

(N
k ) =

N!
k!(N − k)!

sCI: A trivial example



(5 × 5); λmin (3 × 3); λ′￼min ≈ λmin

(λ′￼min ≥ λmin)

→ →

k = 3

(N
k )

min
∥ΨCI∥0≤k

⟨ΨCI | Ĥ |ΨCI⟩
⟨ΨCI |ΨCI⟩

Given , what is optimal* 
subset of determinants?

k

Essentially a combinatorial optimization problem

Optimal selection of determinants in sCI

*Related question: Is  sufficient to yield reasonable approximation?k



Conventional selected CI (sCI)
• Combinatorial problems are hard (generally no solution in polynomial time)

• Most selected CI algorithms iteratively build up the determinant space
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Conventional selected CI (sCI)
• Combinatorial problems are hard (generally no solution in polynomial time)

• Most selected CI algorithms iteratively build up the determinant space


• Ranking procedure generally based on heuristics (e.g. perturbative est.)

• Other heuristics to explore relevant determinant / CI matrix structure

selected CI procedure 

Start w/

reference

Generate 
nearby 
determinants

Rank, keep 
top k

Solve CI

Generate 
nearby 
determinants

Rank, keep 
top k



Improving on selected CI
• Selected CI methods rely on heuristics to evaluate the quality of 

determinants to add to the subspace

• Deterministic (e.g., adaptively selected CI, SVD-CI) variants

• (Semi-)Stochastic (e.g. Full CI Quantum Monte Carlo) variants


• Because they do not know the underlying structure of the CI Hamiltonian, 
the solutions found may be far from optimal



Improving on selected CI
• Selected CI methods rely on heuristics to evaluate the quality of 

determinants to add to the subspace

• Deterministic (e.g., adaptively selected CI, SVD-CI) variants

• (Semi-)Stochastic (e.g. Full CI Quantum Monte Carlo) variants


• Because they do not know the underlying structure of the CI Hamiltonian, 
the solutions found may be far from optimal

Can we use machine learning to identify 
important determinants for  

selected configuration interaction methods?



Machine learning for sCI
Goals:


#1: Infer the underlying structure to a CI Hamiltonian

#2: Use structure to yield best approximate eigenvalue



Machine learning for sCI
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• Learn from labelled 
data


• Results depend on 
training data 
(efficiency + bias)


• If data sufficient, 
should work for #1 
and #2
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and #2


• Learn from 
unlabelled data


• Patterns and data 
groupings


• Could work for #1, 
unclear for #2



Machine learning for sCI

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning 

Goals:

#1: Infer the underlying structure to a CI Hamiltonian

#2: Use structure to yield best approximate eigenvalue

• Learn from labelled 
data


• Results depend on 
training data 
(efficiency + bias)


• If data sufficient, 
should work for #1 
and #2


• Learn from 
unlabelled data


• Patterns and data 
groupings


• Could work for #1, 
unclear for #2

• Data generated and 
incorporated  
on-the-fly


• Goal-oriented (#2)

• Exploration 

informed by learned 
structure (#1)



Machine learning for sCI
Supervised Learning

Unsupervised Learning

Reinforcement Learning 

Taylor, P. R. JCP. 2013, 074113.

Coe, J. P. JCTC. 2018, 5739–5749.
Coe, J. P. JCTC. 2019, 6179–6189.

This work: learn “importance” of determinants from changes in energy  
during CI subspace diagonalization. No user-defined labels.

Learns “importance” of determinants from magnitude of coefficients  
during CI subspace diagonalization. Requires user-defined labels .

|Ci |
|Ci | > Cmin

Do an SVD on the CI problem, but cost of SVD outweighs benefits;

Large vectors apparently still needed to get target accuracy. 

Goings, J.J., et al. ChemRxiv preprint. 2021,10.26434/chemrxiv.14342234



• Agent learns what actions to take in order to maximize a reward signal.

• Trial-and-error search: Agent is not told what actions to take, but learns 

by interacting with its environment by trial and error.

• Delayed reward: Actions may not just affect immediate reward, but also 

influence rewards next time, and so on into the future.

Reinforcement learning

Examples:  
 
Recycling robot: Look for more trash, or go back to recharge?

• What is current battery level? 

• How quickly/easily has it been able to find the charger in the past?


Playing chess: what is the next move?

• What is the current state of the board?

• What opportunities open up? What vulnerabilities are created?

Sutton & Barto (2018)



Sutton & Barto (2018)

Elements of reinforcement learning

Agent observes information about its current state  and its reward 

Agent takes an action at a given time 

Action on the environment yields a new state  with a new reward 

st rt
at

st+1 rt+1

Five elements: agent, state, reward, actions, environment



Sutton & Barto (2018)

Elements of reinforcement learning

Josh observes information about my empty stomach  and hunger 

I eat a sandwich at a given time 

Action on the my body yields a full stomach  with happiness 

st rt
at

st+1 rt+1

Five elements: agent, state, reward, actions, environment



Mapping RL to sCI

1. Agent: the program

2. State: current sub-matrix of the CI Hamiltonian

3. Reward: (change in) minimum eigenvalue of the CI Hamiltonian

4. Actions: swap SDs between “internal” and “external” space

5. Environment: CI Hamiltonian


Learn what actions 
to take in order to: 

min
∥ΨCI∥0≤k

⟨ΨCI | Ĥ |ΨCI⟩
⟨ΨCI |ΨCI⟩

→ →



Q(s, a) ← Q(s, a) + α [R + γ max
a′￼

Q(s′￼, a′￼) − Q(s, a)]

Q-learning

Policy (actions) governed by Q-function  — “quality function”

What is the quality (value) of taking an action  out of a state ?

Q(s, a)
a s

Optimal policy π(s) = arg max
a

Q(s, a)
 learned incrementally for any state/action pair encounteredQ(s, a)

Improved estimate of  is difference between  
reward + discounted sum of future rewards and what you expected

“What you got vs what you expected” 

Better than expected? Do that more. Worse than expected? Do that less.

Align expectations with reality.

Q(s, a)



Q-learning with linear approximation
 is big ( ) — represent Q function with linear approximation:Q Q ∈ S × A

Qw(s, a) =
m

∑
i=1

wi fi(s, a)

Choose  so that  reduces to a difference in learned weights for each 
determinant.

fi(s, a) Q

Qw(s, a) = ∑
i∈s′￼

wi − wp

→ →

s a s′￼

Q(s, a) = w0 + w1 + w4 − w3

Example:

action:  
swap  with 

(det 3 with det 4)

p q



• Not all determinant swaps are likely to be worthwhile.

• We don’t want to spend inordinate amounts of time on useless actions.

• Estimate external determinants that may be significant with perturbation 

theory (similar to existing sCI methods).

Smart exploration

c(1)
i =

∑j≠i Hijc(0)
j

(E(0) − Hii)

• Consider swapping significant external determinants with low-ranked 
internal determinants—can identify these based on weight in .


• For efficiency, don’t consider all of the external space! Just explore over 
the top several candidates.


• To allow for exploration, want to accept sub-optimal actions.

• Basically similar to a Metropolis-Hastings acceptance ratio, with 

greater initial exploration. Later episodes exploit learned .

Qw(s, a)

Q



Three “toy” test cases

H8 CON2

• Compute potential energy surface over bond stretching

• Compare with “exact” FCI: STO-6G basis

• FCI space: 4900 SDs for H8, and 14400 SDs for N2 and CO


• Energy surface allows us to evaluate under different conditions

• e.g. stretched H8 chain or N2 dissociation is strongly correlated

• CO or N2 at equilibrium geometry not so much



Molecular nitrogen N2

With just 2% (288/14400) of the Slater determinants (SDs), the dissociation of 
nitrogen is indistinguishable from Full Configuration Interaction (FCI)



Molecular nitrogen N2
Compare RLCI to existing sCI methods: 
heat-bath CI (HCI) 

• Different free parameters,  
so not 1-to-1 correspondence


• But, tune a few to yield comparable 
accuracy (top figure)

gray shading indicates chem. 
accuracy (< 1 kcal/mol) wrt FCI



Molecular nitrogen N2
Compare RLCI to existing sCI methods: 
heat-bath CI (HCI) 

• Different free parameters,  
so not 1-to-1 correspondence


• But, tune a few to yield comparable 
accuracy (top figure)

gray shading indicates chem. 
accuracy (< 1 kcal/mol) wrt FCI

• Efficiency ~ accuracy / num. SDs

• RLCI requires < 2—3x the number of 

determinants compared to HCI 
(bottom figure)


• This is a considerable compression! 
• Reducing dimension of matrix by a 

factor of three can yield 27x faster 
diagonalization (9x if doing Davidson)



Hydrogen chains and carbon monoxide

• Similar story with hydrogen chains and carbon monoxide tests.

• Fraction of full space yields FCI accuracy.

• Compared to heat-bath CI (other sCI method),  

generally around 2—3  fewer determinants for similar accuracy.×



Convergence analysis

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

Convergence profile: 

1. Rapid initial convergence from initial guess

2. Exploration for next few episodes (little improvement)

3. Exploit previous experience for last bit of energetic benefit


• Case-by-case, but generally converged by ~30 episodes.

• Need to balance search space, but generally larger search space 

(more choices) can give better overall optimum

• All tests here 1.5  with STO-6G basis and Å k = 200



• Implemented methods in 
ChronusQuantum, allows us to take 
advantage of efficient infrastructure.


• Lots of (small) matrix diagonalizations:

• Cache solutions to re-use as initial 

guess.

• Actions change 1 vector element at a 

time, so Davidson converges fast.

• Limit exploration space:

• Don’t try everything, just try most 

promising actions.

• Memory:


• Weight vectors for  are big, 
but also sparse and do not need to 
store all possible elements.

Qw(s, a)

Efficiency considerations

Hang Hu



Larger systems

Table 1: Comparison of the percent FCI correlation energy (% corr.) captured
versus RLCI subspace dimension k as a function of the percentage of the full
Hilbert space (% Ndet) for hydrogen rings with n atoms, an interatomic sepa-
ration of 1.5 Å, using a STO-6G basis.

n k Ndet % Ndet % corr.
10 2000 184756 1.083% 96.2%
10 4000 184756 2.165% 98.3%
10 6000 184756 3.248% 99.2%
12 4000 2704156 0.148% 74.3%
12 6000 2704156 0.222% 77.2%
12 10000 2704156 0.370% 95.6%
14 6000 40116600 0.015% 86.2%
14 10000 40116600 0.025% 88.6%
14 20000 40116600 0.050% 91.3%
16 10000 601080390 0.002% 47.4%
16 20000 601080390 0.003% 49.6%
16 50000 601080390 0.008% 52.4%

<latexit sha1_base64="W400mmCWrbYkKyB6zcl1qtLUrHg="></latexit>

• Hydrogen rings,1.5 Å apart

• Compare with FCI results  

https://github.com/evangelistalab/
hydrogen-models-data


• RLCI recovers over 91% of FCI 
correlation energy with only 
0.05% of the SDs in H14


• This error is ~ 0.01 Hartree


• For larger rings, need more 
determinants  
(0.008% just isn’t cutting it)


• Or, instead of adding more 
determinants in subspace, 
perturbation theory could be 
cheap route to rest of correlation 
(several sCI methods do this)

https://github.com/evangelistalab/hydrogen-models-data
https://github.com/evangelistalab/hydrogen-models-data


• Linear approximation for  is 
biggest roadblock


• Representation: what is an efficient 
yet general way to encode Slater 
determinants?


• Neural networks? Autoencoders?

• Transfer learning — can the trained 

agent be deployed on other similar 
(yet different) problems?


• Can general heuristics be learned?

Q(s, a)

What’s next?

Image: Shutterstock.com

Much more to explore!
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• Hang Hu (UW)

• Prof. Xiaosong Li (UW)

• Dr. Chao Yang (LBNL)

Goings, J.J., Hu, H., Yang, C., Li, X., Reinforcement Learning Configuration Interaction.  
ChemRxiv preprint. 2021,10.26434/chemrxiv.14342234






