
A (hopefully) gentle guide to the computer implementation of
molecular integrals

Joshua Goings

April 28, 2017

In quantum chemistry, we are often interested in evaluating integrals over Gaussian basis functions. Here
I am going to take much of the theory for granted and talk about how one might actually implement the
integrals for quantum chemistry by using recursion relationships with Hermite Gaussians. Our goal is to
have clean, readable code. I’m writing this for the people are comfortable with the mathematics behind
the Gaussian integrals, but want to see a readable computer implementation. I’ll talk a bit about some
computational considerations at the end, but my goal is to convert equations to code. In fact, I’ve tried to
structure the equations and the code in such a way that the two look very similar.

For a very good overview of integral evaluation, please see:

Helgaker, Trygve, and Peter R. Taylor. “Gaussian basis sets and molecular integrals.”
Modern Electronic Structure (1995).

I will try and follow the notation used in the above reference.

Mathematical preliminaries
Let’s start with some of the basics. First, we have our 3D Gaussian functions

Gijk(r, α,A) = xi
Ay

j
Az

k
Aexp(−αr2A) (1)

with orbital exponent α, electronic coordinates r, origin A, and

rA = r − A (2)

also, i, j, k are the angular quantum numbers (e.g. i = 0 is s-type, i = 1 is p type, etc.) Cartesian Gaussians
are separable in 3D along x, y, z so that

Gijk(r, α,A) = Gi(x, α,Ax)Gj(y, α,Ay)Gk(z, α,Az) (3)

with the 1D Gaussian
Gi(x, α,Ax) = (x−Ax)

iexp(−α(x−Ax)
2). (4)

So far, so good. Let’s consider the overlap integral of two 1D Gaussians, a and b

Sab =

∫
Gi(x, α,Ax)Gj(x, β,Bx)dx (5)

=

∫
KABx

i
Ax

j
Bexp(−px2

P)dx (6)

1

where we used the Gaussian product theorem so that

KAB = exp(−qQ2
x), (7)

Qx = Ax −Bx, (8)

q =
αβ

α+ β
, (9)

p = α+ β, and, (10)

Px =
1

p
(αAx + βBx) . (11)

When using Hermite Gaussians, we can express Sab as

Sab =

∫ i+j∑
t=0

Eij
t Λtdx (12)

=

i+j∑
t=0

Eij
t

∫
Λtdx (13)

=

i+j∑
t=0

Eij
t δt0

√
π

p
(14)

= Eij
0

√
π

p
(15)

where Eij
t are expansion coefficients (to be determined recursively) and Λt is the Hermite Gaussian overlap

of two Gaussians a and b. It has a simple expression that kills the sum via the Kronecker delta δt0. It can
be shown that the expansion coefficients can be defined using the following recursive definitions

Eij
t =

1

2p
Ei,j−1

t−1 +
qQx

β
Ei,j−1

t + (t+ 1)Ei,j−1
t+1 , (16)

Eij
t =

1

2p
Ei−1,j

t−1 − qQx

α
Ei−1,j

t + (t+ 1)Ei−1,j
t+1 , (17)

E00
0 = KAB , (18)

Eij
t = 0 if t < 0, or t > i+ j (19)

The first equation gives us a way to reduce the index j and the second gives us a way to reduce index i so
that we can get to the third equation, which is our base case. The last equation tells us what to do if we go
out of index bounds.

Overlap integrals
The first thing we need to do is implement a function E which returns our expansion coefficients Eij

t . Aside
from angular momentum i and j from the Gaussian functions, we also need the distance between Gaussians
Qx and the orbital exponent coefficients α and β as inputs.

2

def E(i,j,t,Qx,a,b):
''' Recursive definition of Hermite Gaussian coefficients.

Returns a float.
a: orbital exponent on Gaussian 'a' (e.g. alpha in the text)
b: orbital exponent on Gaussian 'b' (e.g. beta in the text)
i,j: orbital angular momentum number on Gaussian 'a' and 'b'
t: number nodes in Hermite (depends on type of integral,

e.g. always zero for overlap integrals)
Qx: distance between origins of Gaussian 'a' and 'b'

'''
p = a + b
q = a*b/p
if (t < 0) or (t > (i + j)):

out of bounds for t
return 0.0

elif i == j == t == 0:
base case
return np.exp(‐q*Qx*Qx) # K_AB

elif j == 0:
decrement index i
return (1/(2*p))*E(i‐1,j,t‐1,Qx,a,b) ‐ \

(q*Qx/a)*E(i‐1,j,t,Qx,a,b) + \
(t+1)*E(i‐1,j,t+1,Qx,a,b)

else:
decrement index j
return (1/(2*p))*E(i,j‐1,t‐1,Qx,a,b) + \

(q*Qx/b)*E(i,j‐1,t,Qx,a,b) + \
(t+1)*E(i,j‐1,t+1,Qx,a,b)

This is simple enough! So for a 1D overlap between two Gaussians we would just need to evaluate Eij
0 and

multiply it by
√

π
p . Overlap integrals in 3D are just a product of the x, y, z 1D overlaps. We could imagine

a 3D overlap function like so

import numpy as np

def overlap(a,lmn1,A,b,lmn2,B):
''' Evaluates overlap integral between two Gaussians

Returns a float.
a: orbital exponent on Gaussian 'a' (e.g. alpha in the text)
b: orbital exponent on Gaussian 'b' (e.g. beta in the text)
lmn1: int tuple containing orbital angular momentum (e.g. (1,0,0))

for Gaussian 'a'
lmn2: int tuple containing orbital angular momentum for Gaussian 'b'
A: list containing origin of Gaussian 'a', e.g. [1.0, 2.0, 0.0]
B: list containing origin of Gaussian 'b'

'''
l1,m1,n1 = lmn1 # shell angular momentum on Gaussian 'a'
l2,m2,n2 = lmn2 # shell angular momentum on Gaussian 'b'
S1 = E(l1,l2,0,A[0]‐B[0],a,b) # X
S2 = E(m1,m2,0,A[1]‐B[1],a,b) # Y
S3 = E(n1,n2,0,A[2]‐B[2],a,b) # Z
return S1*S2*S3*np.power(np.pi/(a+b),1.5)

3

Note that we are using the NumPy package in order to take advantage of the definitions of π and the
fractional power to the 3/2. The above two functions overlap and E are enough to get us the overlap
between two Gaussian functions (primitives), but most basis functions are contracted, meaning they are the
sum of multiple Gaussian primitives. It is not too difficult to account for this, and we can finally wrap up
our evaluation of overlap integrals with a function S(a,b) which returns the overlap integral between two
contracted Gaussian functions.

def S(a,b):
'''Evaluates overlap between two contracted Gaussians

Returns float.
Arguments:
a: contracted Gaussian 'a', BasisFunction object
b: contracted Gaussian 'b', BasisFunction object

'''
s = 0.0
for ia, ca in enumerate(a.coefs):

for ib, cb in enumerate(b.coefs):
s += a.norm[ia]*b.norm[ib]*ca*cb*\

overlap(a.exps[ia],a.shell,a.origin,
b.exps[ib],b.shell,b.origin)

return s

Basically, this is just a sum over primitive overlaps, weighted by normalization and coefficient. A word is
in order for the arguments, however. In order to keep the number of arguments we have to pass into our
functions, we have created BasisFunction objects that contain all the relevant data for the basis function,
including exponents, normalization, etc. A BasisFunction class looks like

4

from scipy.special import factorial2 as fact2

class BasisFunction(object):
''' A class that contains all our basis function data

Attributes:
origin: array/list containing the coordinates of the Gaussian origin
shell: tuple of angular momentum
exps: list of primitive Gaussian exponents
coefs: list of primitive Gaussian coefficients
norm: list of normalization factors for Gaussian primitives

'''
def __init__(self,origin=[0.0,0.0,0.0],shell=(0,0,0),exps=[],coefs=[]):

self.origin = np.asarray(origin)
self.shell = shell
self.exps = exps
self.coefs = coefs
self.norm = None
self.normalize()

def normalize(self):
''' Routine to normalize the basis functions, in case they

do not integrate to unity.
'''
l,m,n = self.shell
L = l+m+n
self.norm is a list of length equal to number primitives
normalize primitives first (PGBFs)
self.norm = np.sqrt(np.power(2,2*(l+m+n)+1.5)*

np.power(self.exps,l+m+n+1.5)/
fact2(2*l‐1)/fact2(2*m‐1)/
fact2(2*n‐1)/np.power(np.pi,1.5))

now normalize the contracted basis functions (CGBFs)
Eq. 1.44 of Valeev integral whitepaper
prefactor = np.power(np.pi,1.5)*\

fact2(2*l ‐ 1)*fact2(2*m ‐ 1)*fact2(2*n ‐ 1)/np.power(2.0,L)

N = 0.0
num_exps = len(self.exps)
for ia in range(num_exps):

for ib in range(num_exps):
N += self.norm[ia]*self.norm[ib]*self.coefs[ia]*self.coefs[ib]/\

np.power(self.exps[ia] + self.exps[ib],L+1.5)

N *= prefactor
N = np.power(N,‐0.5)
for ia in range(num_exps):

self.coefs[ia] *= N

5

So, for example if we had a STO-3G Hydrogen 1s at origin (1.0, 2.0, 3.0), we could create a basis function
object for it like so

myOrigin = [1.0, 2.0, 3.0]
myShell = (0,0,0) # p‐orbitals would be (1,0,0) or (0,1,0) or (0,0,1), etc.
myExps = [3.42525091, 0.62391373, 0.16885540]
myCoefs = [0.15432897, 0.53532814, 0.44463454]
a = BasisFunction(origin=myOrigin,shell=myShell,exps=myExps,coefs=myCoefs)

Where we used the EMSL STO-3G definition

! STO‐3G EMSL Basis Set Exchange Library
! Elements References
! ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐
! H ‐ Ne: W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 2657 (1969).

H 0
S 3 1.00

3.42525091 0.15432897
0.62391373 0.53532814
0.16885540 0.44463454

So doing S(a,a) = 1.0, since the overlap of a basis function with itself (appropriately normalized) is one.

Kinetic energy integrals
Having finished the overlap integrals, we move on to the kinetic integrals. The kinetic energy integrals can
be written in terms of overlap integrals

Tab = −1

2

[
D2

ijSklSmn + SijD
2
klSmn + SijSklD

2
mn

]
(20)

where
D2

ij = j(j − 1)Si,j−2 − 2β(2j + 1)Sij + 4β2Si,j+2 (21)

6

For a 3D primitive, we can form a kinetic function analogous to overlap,

def kinetic(a,lmn1,A,b,lmn2,B):
''' Evaluates kinetic energy integral between two Gaussians

Returns a float.
a: orbital exponent on Gaussian 'a' (e.g. alpha in the text)
b: orbital exponent on Gaussian 'b' (e.g. beta in the text)
lmn1: int tuple containing orbital angular momentum (e.g. (1,0,0))

for Gaussian 'a'
lmn2: int tuple containing orbital angular momentum for Gaussian 'b'
A: list containing origin of Gaussian 'a', e.g. [1.0, 2.0, 0.0]
B: list containing origin of Gaussian 'b'

'''
l1,m1,n1 = lmn1
l2,m2,n2 = lmn2
term0 = b*(2*(l2+m2+n2)+3)*\

overlap(a,(l1,m1,n1),A,b,(l2,m2,n2),B)
term1 = ‐2*np.power(b,2)*\

(overlap(a,(l1,m1,n1),A,b,(l2+2,m2,n2),B) +
overlap(a,(l1,m1,n1),A,b,(l2,m2+2,n2),B) +
overlap(a,(l1,m1,n1),A,b,(l2,m2,n2+2),B))

term2 = ‐0.5*(l2*(l2‐1)*overlap(a,(l1,m1,n1),A,b,(l2‐2,m2,n2),B) +
m2*(m2‐1)*overlap(a,(l1,m1,n1),A,b,(l2,m2‐2,n2),B) +
n2*(n2‐1)*overlap(a,(l1,m1,n1),A,b,(l2,m2,n2‐2),B))

return term0+term1+term2

and for contracted Gaussians we make our final function T(a,b)

def T(a,b):
'''Evaluates kinetic energy between two contracted Gaussians

Returns float.
Arguments:
a: contracted Gaussian 'a', BasisFunction object
b: contracted Gaussian 'b', BasisFunction object

'''
t = 0.0
for ia, ca in enumerate(a.coefs):

for ib, cb in enumerate(b.coefs):
t += a.norm[ia]*b.norm[ib]*ca*cb*\

kinetic(a.exps[ia],a.shell,a.origin,\
b.exps[ib],b.shell,b.origin)

return t

Nuclear attraction integrals
The last one-body integral I want to consider here is the nuclear attraction integrals. These differ from the
overlap and kinetic energy integrals in that the nuclear attraction operator 1/rC is Coulombic, meaning we
cannot easily factor the integral into Cartesian components x, y, z.

To evaluate these integrals, we need to set up an auxiliary Hermite Coulomb integral Rn
tuv(p,P,C) that

handles the Coulomb interaction between a Gaussian charge distribution centered at P and a nuclei centered

7

at C. The Hermite Coulomb integral, like its counterpart Eij
t , is defined recursively:

Rn
t+1,u,v = tRn+1

t−1,u,v +XPCR
n+1
t,u,v (22)

Rn
t,u+1,v = uRn+1

t,u−1,v + YPCR
n+1
t,u,v (23)

Rn
t,u,v+1 = vRn+1

t,u,v−1 + ZPCR
n+1
t,u,v (24)

Rn
0,0,0 = (−2p)nFn(pR

2
PC) (25)

where Fn(T) is the Boys function

Fn(T) =

∫ 1

0

exp(−Tx2)x2ndx (26)

which is a special case of the Kummer confluent hypergeometric function, 1F1(a, b, x)

Fn(T) =
1F1(n+ 1

2 , n+ 3
2 ,−T)

2n+ 1
(27)

which is convenient for us, since SciPy has an implementation of 1F1 as a part of scipy.special. So for
R we can code up the recursion like so

def R(t,u,v,n,p,PCx,PCy,PCz,RPC):
''' Returns the Coulomb auxiliary Hermite integrals

Returns a float.
Arguments:
t,u,v: order of Coulomb Hermite derivative in x,y,z

(see defs in Helgaker and Taylor)
n: order of Boys function
PCx,y,z: Cartesian vector distance between Gaussian

composite center P and nuclear center C
RPC: Distance between P and C

'''
T = p*RPC*RPC
val = 0.0
if t == u == v == 0:

val += np.power(‐2*p,n)*boys(n,T)
elif t == u == 0:

if v > 1:
val += (v‐1)*R(t,u,v‐2,n+1,p,PCx,PCy,PCz,RPC)

val += PCz*R(t,u,v‐1,n+1,p,PCx,PCy,PCz,RPC)
elif t == 0:

if u > 1:
val += (u‐1)*R(t,u‐2,v,n+1,p,PCx,PCy,PCz,RPC)

val += PCy*R(t,u‐1,v,n+1,p,PCx,PCy,PCz,RPC)
else:

if t > 1:
val += (t‐1)*R(t‐2,u,v,n+1,p,PCx,PCy,PCz,RPC)

val += PCx*R(t‐1,u,v,n+1,p,PCx,PCy,PCz,RPC)
return val

and we can define our boys(n,T) function as

from scipy.special import hyp1f1

def boys(n,T):
return hyp1f1(n+0.5,n+1.5,‐T)/(2.0*n+1.0)

8

There are other definitions of the Boys function of course, in case you do not want to use the SciPy
built-in. Note that R requires knowledge of the composite center P from two Gaussians centered at A and
B. We can determine P using the Gaussian product center rule

P =
αA+ βB

α+ β
(28)

which is very simply coded up as

def gaussian_product_center(a,A,b,B):
return (a*A+b*B)/(a+b)

Now that we have a the Coulomb auxiliary Hermite integrals Rn
tuv, we can form the nuclear attraction

integrals with respect to a given nucleus centered at C, Vab(C), via the expression

Vab(C) =
2π

p

i+j+1,
k+l+1,
m+n+1∑
t,u,v

Eij
t Ekl

u Emn
v R0

tuv(p,P,C) (29)

def nuclear_attraction(a,lmn1,A,b,lmn2,B,C):
''' Evaluates kinetic energy integral between two Gaussians

Returns a float.
a: orbital exponent on Gaussian 'a' (e.g. alpha in the text)
b: orbital exponent on Gaussian 'b' (e.g. beta in the text)
lmn1: int tuple containing orbital angular momentum (e.g. (1,0,0))

for Gaussian 'a'
lmn2: int tuple containing orbital angular momentum for Gaussian 'b'
A: list containing origin of Gaussian 'a', e.g. [1.0, 2.0, 0.0]
B: list containing origin of Gaussian 'b'
C: list containing origin of nuclear center 'C'

'''
l1,m1,n1 = lmn1
l2,m2,n2 = lmn2
p = a + b
P = gaussian_product_center(a,A,b,B) # Gaussian composite center
RPC = np.linalg.norm(P‐C)

val = 0.0
for t in range(l1+l2+1):

for u in range(m1+m2+1):
for v in range(n1+n2+1):

val += E(l1,l2,t,A[0]‐B[0],a,b) * \
E(m1,m2,u,A[1]‐B[1],a,b) * \
E(n1,n2,v,A[2]‐B[2],a,b) * \
R(t,u,v,0,p,P[0]‐C[0],P[1]‐C[1],P[2]‐C[2],RPC)

val *= 2*np.pi/p
return val

And, just like all the other routines, we can wrap it up to treat contracted Gaussians like so:

9

def V(a,b,C):
'''Evaluates overlap between two contracted Gaussians

Returns float.
Arguments:
a: contracted Gaussian 'a', BasisFunction object
b: contracted Gaussian 'b', BasisFunction object
C: center of nucleus

'''
v = 0.0
for ia, ca in enumerate(a.coefs):

for ib, cb in enumerate(b.coefs):
v += a.norm[ia]*b.norm[ib]*ca*cb*\

nuclear_attraction(a.exps[ia],a.shell,a.origin,
b.exps[ib],b.shell,b.origin,C)

return v

Important: Note that this is the nuclear repulsion integral contribution from an atom centered at C.
To get the full nuclear attraction contribution, you must sum over all the nuclei, as well as scale each term
by the appropriate nuclear charge!

Two electron repulsion integrals
We are done with the necessary one-body integrals (for a basic Hartree-Fock energy code, at least) and are
ready to move on to the two-body terms: the electron-electron repulsion integrals. Thankfully, much of the
work has been done for us on account of the nuclear attraction one-body integrals.

In terms of Hermite integrals, to evaluate the two electron repulsion terms, we must evaluate the sum-
mation

gabcd =
2π5/2

pq
√
p+ q

i+j+1,
k+l+1,
m+n+1∑
t,u,v

Eij
t Ekl

u Emn
v

i′+j′+1,
k′+l′+1,
m′+n′+1∑

τ,ν,ϕ

Ei′j′

τ Ek′l′

ν Em′n′

ϕ (−1)τ+ν+ϕR0
t+τ,u+ν,v+ϕ(p, q,P,Q) (30)

which looks terrible and it is. However, recalling that p = α+ β letting q = γ + δ (that is, the Gaussian
exponents on a and b, and c and d), we can write the equation in a similar form to the nuclear attraction
integrals

10

def electron_repulsion(a,lmn1,A,b,lmn2,B,c,lmn3,C,d,lmn4,D):
''' Evaluates kinetic energy integral between two Gaussians

Returns a float.
a,b,c,d: orbital exponent on Gaussian 'a','b','c','d'
lmn1,lmn2
lmn3,lmn4: int tuple containing orbital angular momentum

for Gaussian 'a','b','c','d', respectively
A,B,C,D: list containing origin of Gaussian 'a','b','c','d'

'''
l1,m1,n1 = lmn1
l2,m2,n2 = lmn2
l3,m3,n3 = lmn3
l4,m4,n4 = lmn4
p = a+b # composite exponent for P (from Gaussians 'a' and 'b')
q = c+d # composite exponent for Q (from Gaussians 'c' and 'd')
alpha = p*q/(p+q)
P = gaussian_product_center(a,A,b,B) # A and B composite center
Q = gaussian_product_center(c,C,d,D) # C and D composite center
RPQ = np.linalg.norm(P‐Q)

val = 0.0
for t in range(l1+l2+1):

for u in range(m1+m2+1):
for v in range(n1+n2+1):

for tau in range(l3+l4+1):
for nu in range(m3+m4+1):

for phi in range(n3+n4+1):
val += E(l1,l2,t,A[0]‐B[0],a,b) * \

E(m1,m2,u,A[1]‐B[1],a,b) * \
E(n1,n2,v,A[2]‐B[2],a,b) * \
E(l3,l4,tau,C[0]‐D[0],c,d) * \
E(m3,m4,nu ,C[1]‐D[1],c,d) * \
E(n3,n4,phi,C[2]‐D[2],c,d) * \
np.power(‐1,tau+nu+phi) * \
R(t+tau,u+nu,v+phi,0,\

alpha,P[0]‐Q[0],P[1]‐Q[1],P[2]‐Q[2],RPQ)

val *= 2*np.power(np.pi,2.5)/(p*q*np.sqrt(p+q))
return val

11

And, for completeness’ sake, we wrap the above to handle contracted Gaussians

def ERI(a,b,c,d):
'''Evaluates overlap between two contracted Gaussians

Returns float.
Arguments:
a: contracted Gaussian 'a', BasisFunction object
b: contracted Gaussian 'b', BasisFunction object
c: contracted Gaussian 'b', BasisFunction object
d: contracted Gaussian 'b', BasisFunction object

'''
eri = 0.0
for ja, ca in enumerate(a.coefs):

for jb, cb in enumerate(b.coefs):
for jc, cc in enumerate(c.coefs):

for jd, cd in enumerate(d.coefs):
eri += a.norm[ja]*b.norm[jb]*c.norm[jc]*d.norm[jd]*\

ca*cb*cc*cd*\
electron_repulsion(a.exps[ja],a.shell,a.origin,\

b.exps[jb],b.shell,b.origin,\
c.exps[jc],c.shell,c.origin,\
d.exps[jd],d.shell,d.origin)

return eri

And there you have it! All the integrals necessary for a Hartree-Fock SCF code.

Computational efficiency considerations
Our goal here has been to eliminate some of the confusion when it comes to connecting mathematics to
actual computer code. So the code that we have shown is hopefully clear and looks nearly identical to the
mathematical equations they are supposed to represent. This is one reason we chose Python as the code of
choice to implement the integrals. It emphasizes readability.

If you use the code as is, you’ll find that you can only really handle small systems. To that end, I’ll give
a few ideas on how to improve the integral code to actually be usable.

First, I would recommend not using pure Python. The problem is that we have some pretty deep loops
in the code, and nested for loops will kill your speed if you insist on sticking with Python. Now, you
can code in another language, but I would suggest rewriting some of the lower level routines with Cython
(http://www.cython.org). Cython statically compiles your code to eliminate many of the Python calls
that slow your loops down. In my experience, you will get several orders of magnitude speed up. This brings
me to my second point. One of the problems with Python is that you have the global interpreter lock (GIL)
which basically means you cannot run things in parallel. Many of the integral evaluation routines would
do well if you could split the work up over multiple CPUs. If you rewrite some of the low level routines
such that they do not make Python calls anymore, you can turn off the GIL and wrap the code in OpenMP
directives, or even use Cython’s cython.parallel module. This will take some thought, but can definitely
be done.

A couple other thoughts: be sure to exploit the permutational symmetry of the integrals. The two
electron repulsion integrals, for example, can be done in 1/8 of the time just by exploiting these symmetries,
which are unrelated to point group. Also, you can exploit many of the integral screening routines, since
many of the two electron integrals are effectively zero. There are a lot of tricks out there in the literature,
go check them out!

12

