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N.B. Most of this work was first done by Fukutome, though my notes are based off of Stuber and
Paldus. The notes here agree with both authors, though the derivations here make a rather large
departure from the literature. Thus, it is helpful to reference the following work:

• Fukutome, Hideo. “Unrestricted Hartree-Fock theory and its applications to molecules and chemical
reactions.” International Journal of Quantum Chemistry 20.5 (1981): 955-1065.

• Stuber, J. L., and J. Paldus. “Symmetry breaking in the independent particle model.” Fundamental
World of Quantum Chemistry, A Tribute Volume to the Memory of Per-Olov Löwdin 1 (2003): 67-
139.

I’d strongly recommend looking at Stuber and Paldus’ work first. Their terminology is more consistent
with mainstream electronic structure theory.

We want to classify broken symmetry wave function by investigating how they transform under the action
of the invariance operators ĝ constituting the symmetry group G of the spin-free electronic Hamiltonian Ĥ,
i.e.

[ĝ, Ĥ] = 0, (∀ĝ ∈ G)

which is equivalent to
ĝĤĝ−1 = Ĥ, (∀ĝ ∈ G).

This simply means Ĥ is invariant to transformation by ĝ, whatever ĝ may be. In general, when |ψ〉 is an
eigenstate of Ĥ, then ĝ|ψ〉 is also an eigenstate belonging to the same eigenvalue as ψ〉.

Now, exact eigenstates of Ĥ can be chosen to be simultaneous eigenstates of the various symmetries in
G. In contrast, for approximate variational wave functions (e.g. Hartree-Fock) the symmetry requirements
represent additional constraints. This is Löwdin’s “symmetry dilemma”. To state this dilemma again,
we know the exact solution (lowest energy solution) will have certain symmetries, but if we include these
symmetries in our approximate, variational Hamiltonian, we can only raise the energy and not lower it. This
means we can get closer to the exact solution by removing physical constraints! This is troublesome, but not
a huge deal in practice. It’s crucial to recognize that this problem arises only because we use an approximate
independent-particle Hamiltonian.

There are several ways to break the single-determinental Hartree-Fock model into its various broken
symmetry subgroups. However we do this, what we ultimately want to determine is the form of the operators
Â that are invariant with respect to similarity transformations by various subgroups H ⊂ G, i.e.

ĥÂĥ−1 = Â, (∀ĥ ∈ H ⊂ G)

I find it easier to put Â into a finite basis and treat this problem with the tools of linear algebra. The basis
for our independent particle model will be the spinor basis,

|α〉 =

(
1
0

)
, |β〉 =

(
0
1

)
, and |α〉〈α| = |β〉〈β| = I2

1



so any arbitrary spin function can be written

|p〉 = p1|α〉+ p2|β〉 =

(
p1
p2

)
We will only worry about one body operators Â, which include the Fock operator as well as the unitary
parameterization of the single determinant (c.f. Thouless representation). Putting Â into a spinor basis
gives us

Â = |iσ1〉〈iσ1|Â|jσ2〉〈jσ2| = Aiσ1,jσ2 |iσ1〉〈jσ2| =
(

Aαα Aαβ

Aβα Aββ

)
with

(Aσ1σ2
)ij ∈ C and σ1, σ2 ∈ α, β

Or, in second quantization

Â =
∑
ij

∑
σ1,σ2

Aiσ1,jσ2a
†
iσ1
ajσ2 =

∑
ij

∑
σ1,σ2

Aiσ1,jσ2Ê
iσ1
jσ2

The transformation properties of Â under symmetry operations can be determined by examining the trans-
formation of the U(2n) generators Êiσ1

jσ2
, but it is much simpler to consider the transformations of the 2× 2

(block) matrix A, e.g.

ĥ

(
Aαα Aαβ

Aβα Aββ

)
ĥ−1 =

(
Aαα Aαβ

Aβα Aββ

)
Basically, we are looking for the constraints on A that make the above equation true, for any given symmetry
operation.

The general invariance group of the spin-free electronic Hamiltonian involves the spin rotation group
SU(2) and the time reversal group T , i.e. SU(2) ⊗T . SU(2) can be given in terms of spin operators,

SU(2) = {UR(~n, θ) = exp(iθ

3∑
a=1

Ŝan̂a);~n = (n1, n2, n3);~n ∈ R3; ||~n|| = 1, θ ∈ (−2π, 2π]}

All of this amounts to performing rotations in spin space. The form looks awfully similar to rotations in
3D space (in fact, the relationship between rotations in spin space and 3D space is much deeper than that).
The time reversal group is given as

T = {±1̂,±Θ̂}

In general,
Θ̂ = ÛR(~e2,−π)K̂ = exp(−iπŜ2)K̂

Θ̂−1 = −Θ̂ = exp(iπŜ2)K̂

Where K̂ is the complex conjugation operator. There is nothing special about using Ŝ2, it’s just convention.
Time reversal doesn’t really affect time per se, but rather changes the direction of movement, be it linear
momentum or angular momentum. It’s an antiunitary operator (it must be, in fact) that consists of the spin-
looking part (unitary) and then the complex conjugation operator (antiunitary), to be antiunitary overall.
It affects electrons by flipping their spin and then taking the complex conjugate. One final detail about the
symmetry operators before we go on, and that is to observe that since SU(2) is a double cover, if we rotate
in spin space by 2π, we flip the sign of the wave function. If we rotate by another 2π, we get the original
state back. This is characteristic of fermions, of which electrons are a part.

Let us now consider the unitary transformations of the form U = exp(iB̂) where B̂ = B̂†, acting on some
operator Â.This is valid for any unitary transformation that depends on a continuous parameter (which we
have absorbed into B̂). We insist

Â = Û ÂÛ−1 = e(−iB̂)Âe(iB̂)
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Now, by the Baker-Campbell-Hausdorff transformation, we can rewrite the right hand side as

e(−iB̂)Âe(iB̂) = Â+
[
Â, iB̂

]
+

1

2!

[[
Â, iB̂

]
, iB̂

]
+ · · ·

Since by definition Â = e(−iB̂)Âe(iB̂) It suffices to show that the constraints on Â introduced by the symmetry

operation are satisfied when
[
Â, iB̂

]
= 0.

This is an excellent result, because it means that we can just look at how the 2× 2 matrix A transforms
under the Pauli spin matrices which define the SU(2) spin rotation as well as the time-reversal operation (in
the time-reversal case, we can use the BCH expansion of the unitary part Ŝy and then absorb the complex
conjugation into the commutator expression). We can show how RHF, UHF, and GHF all fall out of the
different symmetry combinations (or lack thereof). From here on out, I’ll drop the hats on my operators for
clarity.

Let’s start by considering how many different types of symmetry subgroups we can have. A moments
thought at the form of the spin rotation and time-reversal groups gives the following subgroups:

1. I. This means there is no symmetry.

2. Θ. This means we are just symmetric to time-reversal symmetry.

3. K. Only symmetric to complex conjugation.

4. Sz. Only symmetric to spin rotations about the z-axis.

5. Sz,Θ. Symmetric to both spin rotation about z, as well as time-reversal symmetry.

6. Sz, K. Symmetric to spin rotation about z, as well as complex conjugation.

7. S2. Symmetric to all spin rotations.

8. S2, Θ. Symmetric to all spin rotations and time reversal symmetries.

That’s it! That’s all the cases you can get.
Let’s go through them, case by case, using the complex Fock matrix as an example, i.e.(

Fαα Fαβ
Fβα Fββ

)
Where we solve, for each symmetry (or group of symmetries),

h

(
Fαα Fαβ
Fβα Fββ

)
h−1 =

(
Fαα Fαβ
Fβα Fββ

)
where h is the generator of the symmetry.

0.1 I. No symmetry.

In this case, our transformation on F is rather simple. It looks like

I

(
Fαα Fαβ
Fβα Fββ

)
I−1 =

(
Fαα Fαβ
Fβα Fββ

)
So we get no constraints. We can mix spin, as well as take on complex values. This is the structure of the
complex generalized Hartree Fock (GHF) Fock matrix.
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0.2 K. Complex conjugation symmetry.

If the only symmetry that holds is complex conjugation, our transformation looks like

K

(
Fαα Fαβ
Fβα Fββ

)
K =

(
F∗αα F∗αβ
F∗βα F∗ββ

)
Note that K is its own inverse. It also only acts to either the left or the right. The asterisk indicates complex
conjugation (not and adjoint!). The constraint we get here is that the values of the Fock matrix have to be
identical on complex conjugation. Since this can only happen if the values are real, we get the real GHF
Fock equations.

0.3 Θ. Time reversal symmetry.

Now we start to get slightly more complicated. Using the Pauli matrix

σ2 =

(
0 −i
i 0

)
To represent the unitary S2 operation gives us

−i
(

0 −i
i 0

)
K

(
Fαα Fαβ
Fβα Fββ

)
iK

(
0 i
−i 0

)
=

(
F∗ββ −F∗βα
−F∗αβ F∗αα

)
We see that this really only introduces two constraints, so we choose to eliminate Fβα and Fββ . This gives
the final result of paired GHF, or (

Fαα Fαβ
−F∗αβ F∗αα

)

0.4 Sz. Rotation about spin z-axis.

Here we use the Pauli matrix

σ3 =

(
1 0
0 −1

)
And show that (

1 0
0 −1

)(
Fαα Fαβ
Fβα Fββ

)(
1 0
0 −1

)
=

(
Fαα −Fαβ
−Fβα Fββ

)
which is only satisfied if

F =

(
Fαα 0
0 Fββ

)
This gives us the complex version of UHF. We see invariance with respect to Sz results in two separate spin
blocks, with no restriction on whether they take real or complex values, or the dimension of either spin block.

0.5 Sz,Θ. Rotation about spin z-axis and time reversal.

We are now at the point where we examine the effect of invariance to multiple symmetry operations. It
might concern you that considering multiple symmetry operations means that the order in which we perform
symmetry operations matters. In general symmetry operations do not commute, but we will see that for
our purposes order really doesn’t matter. Because we insist on invariance, the multiple symmetries never
actually act on each other, therefore we don’t need to consider the commutator between them. Or, put a
different way, because each symmetry operation returns the system to its original state, we can consider each
operation separately. The system contains no memory of the previous symmetry operation. We can show
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this another way using the BCH expansion. Consider two symmetry operations on F parameterized by “A”
and “B”:

e(−iA)e(−iB)Fe(iB)e(iA) = e(−iA)[F + [F, iB] + · · · ]e(iA) = e(−iA)Fe(iA) = [F + [F, iA] + · · · ]

Which is true if and only if
[F, iB] = [F, iA] = 0

Which decouples A and B. Considering multiple symmetry operations only gives us more constraints, and
order doesn’t matter. Let’s see it in action then for time reversal and z-axial spin symmetry. Using the
results for time reversal symmetry, we have(

1 0
0 −1

)(
Fαα Fαβ
−F∗αβ F∗αα

)(
1 0
0 −1

)
=

(
Fαα −Fαβ
F∗αβ F∗αα

)
Which means the off diagonals must go to zero, giving our final result of paired UHF,(

Fαα 0
0 F∗αα

)

0.6 Sz,K. Rotation about spin z-axis and complex conjugation.

We do a similar thing as above for rotation about spin z-axis and complex conjugation. This one is par-
ticularly easy to show, starting from the results of complex conjugation symmetry. Since symmetry with
respect to K forces all matrix elements to be real, we just get the real version of the results of symmetry
with respect to Sz — we get the real UHF equations!

F =

(
Fαα 0
0 Fββ

)
, (F ∈ R)

0.7 S2,Sz. Rotation about all spin axes.

We finally move onto invariance with respect to rotations about all spin axes. Again, this is a little weird
because these operations aren’t commutative, but we have already shown that insisting on invariance leads
to a decoupling of the symmetry operations. (I should mention that if you are still unsure of this, feel free
to brute force through all orders of symmetry operations. You’ll see that it makes no difference.)

Two things worth mentioning here: first, technically Sz is already a part of the total spin rotation group,
so it’s a little weird to separate them into S2 and Sz, but we understand this as drawing the distinction that
you can be symmetric to Sz but not S2. If you are invariant to S2, though, you will be invariant to Sz.
Second, while S2 does technically have an operator representation, it is not a symmetry operation. Think
about the form of the operator S2: it’s essentially the identity, right? So when we say invariant with respect
to S2, what we really mean is that we are invariant to the whole spin rotation group, Sx, Sy, Sz.

To show invariance with respect to the spin group, it suffices just to consider any two spin rotations, since
each spin operator can be generated by the commutator of the other two. You can show this using the Jacobi
identity. Say we are looking the invariance of F with respect to generators A,B,and C, and [A,B] = iC (like
our spin matrices do). We want to show

[F,A] = [F,B] = 0 =⇒ [F,C] = 0

The Jacobi identity tells us
[[A, [B,F ]] + [B, [F,A]] + [F, [A,B]] = 0

Now, by definition the first two terms are zero, and we can evaluate the commutator of [A,B] = iC, which
means if [F,A] = [F,B] = 0, then it must follow that [F,C] = 0 as well (the imaginary in front doesn’t make
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a difference; expand to see). That being said, we can evaluate invariance with respect to all spin axes by
using the results of Sz and applying the generator Sx defined by Pauli matrix σ2 to it, where

σ2 =

(
0 1
1 0

)
Applying this gives (

0 1
1 0

)(
Fαα 0
0 Fββ

)(
0 1
1 0

)
=

(
Fββ 0
0 Fαα

)
Which means that Fαα = Fββ , or

F =

(
FR 0
0 FR

)
, (FR ∈ C)

Invariance in this symmetry group results in the complex RHF equations, where the alpha and beta spin
blocks are equivalent. Thus orbitals are doubly occupied.

0.8 S2,Sz,Θ,K. All spin rotations and time reversal.

Given the results we just obtained above, and understanding that time reversal contains the Sy operator, we
only need to take the previous results and make them invariant to complex conjugation. This is very simple,
and we see that

K

(
FR 0
0 FR

)
K =

(
F∗R 0
0 F∗R

)
In other words, the real RHF equations, since invariance with respect to complex conjugation forces the
elements to be real.
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